Портал о ремонте ванной комнаты. Полезные советы

Опыт майкельвона-морли. Опыт майкельсона

За двадцать лет до начала этого периода, однако, фундамент всего построения уже дал трещину, и, хотя наверху строительство продолжалось, основы уже нуждались в ремонте и укреплении.

Мы уже несколько раз подчеркивали, что всякий решающий эксперимент, ставящий целью подтверждение теории неподвижного эфира, должен быть достаточно точным, чтобы учесть величины второго порядка по Лишь в этом случае можно достичь уверенности в вопросе о том, действительно ли всякое быстро движущееся тело встречает некий эфирный ветер, сдувающий с него световые волны, как требует того теория.

Майкельсон и Морли (1881 г.) впервые успешно осуществили важнейший эксперимент такого рода. Они пользовались интерферометром Майкельсона (гл. IV, § 4, стр. 102), который им удалось усовершенствовать до состояния точного прибора колоссальных возможностей.

При исследовании влияния движения Земли на скорость света (гл. IV, § 9, стр. 129) было обнаружено, что время, необходимое световому лучу для прохождения расстояния параллельно движению Земли туда и обратно, отличается лишь на величину второго порядка от значения, которое это время имело бы, если бы Земля покоилась. Мы установили раньше, что это время составляет

его можно записать и иначе:

Если бы его можно было настолько точно измерить, что долю

удалось бы отличить от 1, несмотря на чрезвычайно малое значение величины то мы получили бы средство обнаружения эфирного ветра.

Однако, вне всякого сомнения, невозможно измерить короткий интервал времени, который затрачивает свет для того, чтобы пересечь определенное расстояние. Интерферометрические методы дают просто разности времен, затрачиваемых светом на прохождение различных, не равных друг другу расстояний между двумя заданными точками. Но зато эти разности они дают с поразительной точностью.

Фиг. 109. Путь луча света в опыте Майкельсона.

Поэтому Майкельсон и Морли заставляли второй луч проходить расстояние равное одной и той же величине I, вперед и назад, но в обоих случаях по перпендикуляру к направлению движения Земли по орбите (фиг. 109). Когда свет движется от А до В, Земля проходит короткое расстояние вперед, так что точка В перемещается в точку В в эфире. Таким образом, истинное расстояние, пройденное светом в эфире, равно если свету потребовалось время для того, чтобы покрыть это расстояние, то За то же время точка А перемещается в положение А со скоростью и; следовательно, Применяя теперь теорему Пифагора к прямоугольному треугольнику мы получаем

На обратный путь свету требуется то же время, поскольку Земля смещается на аналогичный отрезок так, что исходная точка светового луча А перемещается из положения

Таким образом, на путь туда и обратно свет затрачивает время

Разность времен, затрачиваемых светом на прохождение параллельного и перпендикулярного направлению движения Земли расстояний, составляет

Следовательно, с достаточной степенью точности можно записать

Итак, запаздывание одной световой волны по сравнению с другой представляет собой величину второго порядка.

Это запаздывание можно измерить с помощью интерферометра Майкельсона (фиг. 110). В этом приборе свет, идущий от

источника разделяется полупрозрачным зеркалом на два луча, которые движутся по перпендикулярным друг другу направлениям к зеркалам! и отражаясь от которых они направляются обратно к зеркалу От полупрозрачного зеркала лучи идут параллельно к окуляру где наблюдается их интерференция. Если расстояния равны и если одно плечо прибора расположить в направлении движения Земли, то мы как раз получаем модель рассмотренного выше случая. Таким образом, два луча в интерферометре Майкельсона достигают плоскости зрения с разностью времен

Фиг. 110. Интерферометр Майкельсона.

Поэтому интерференционные полосы расположены не точно так, как они были бы расположены, если бы Земля покоилась. Однако если теперь повернуть весь прибор на 90° и совместить с направлением движения Земли второе плечо прибора, то интерференционные полосы должны сместиться на равную величину в противоположном направлении. Следовательно, наблюдая положение интерференционных полос при двух разных положениях прибора, можно измерить смещение, соответствующее удвоенному времени запаздывания

Если период колебаний используемой световой волны, то отношение времени запаздывания к периоду колебаний равно

откуда, используя формулу (35), согласно которой длина волны наше искомое соотношение можно записать как

Итак, при поворачивании прибора два интерферирующих пакета волн испытывают относительное смещение, отношение которого к длине волны равно (фиг. 111). Интерференционные полосы сами по себе возникают вследствие того, что лучи, покидающие источник в различных направлениях, должны

– важен для развития теории относительности опыт, в котором не было обнаружено движения Земли относительно эфира. Эксперимент провели в 1887 Альберт Майкельсон и Эдвард Морли. Альберт Майкельсон был награжден Нобелевской премией по физике за 1907 с формулировкой: «за создание прецизионных инструментов и выполненные с их помощью спектроскопические и метрологические исследования», в котором прямо не упоминается этот эксперимент, но упоминается изобретено для него оборудования.
Схематическое изображение движения Земли в гипотетическом потоке эфира. Со становлением электродинамики в конце XIX века считалось, что электромагнитные волны, а, следовательно, и свет, распространяются в особом невесомом упругой среде, которое называли эфиром. Поскольку Земля движется вокруг Солнца со скоростью свыше 30 км / с, то возникали две возможности: либо она движется относительно эфира, или же она захватывает эфир частично, увлекая за собой. Изначально эксперимент ставил себе задачу проверки этих гипотез.
http://сайт/uploads/posts/2011-02/1297963534_2%28en%29.svg.png Схема движения лучей в интерферометре Майкельсона Современная интерференционная картина в аналогичном эксперименте с использованием красного лазера. Перед исследователями стояла задача изобрести инструмент, который бы был достаточно чувствительным к движению эфира относительно Земли. Этот инструмент теперь называется интерферометром Майкельсона. В интерферометре начальный луч света разделяется на два с помощью полупрозрачного зеркала, а затем эти два луча, преодолев разный путь, сводятся вместе и интерферируют. Изучая интерференционную картину, можно сделать вывод о разнице оптических путей между двумя лучами.
Если Земля движется относительно эфира, то луч, перпендикулярный к движению Земли и луч, параллельный к движению Земли должны были бы по разному вичуваты движение эфира, а, следовательно, проходить различное оптический путь. Таким образом, при вращении интерферометра интерференционная картина должна была бы меняться.
В 1881 Майкельсон в Германии провел такой эксперимент и получил меньшую, чем ожидалось, изменение интерференционной картины, но тогда его прибор имел еще слишком большую погрешность, чтобы можно было что-то утверждать.
Точный интерферометр Майкельсон сконструировал в США, в университете Вестерн-Резерв вместе с Морли. Длина плеча интерферометра составляла 11 м. Устройство поместили в закрытое помещение в подвале каменного здания, в землю уменьшая возможный температурное воздействие и вибрации. Для того, чтобы уменьшить вибрации еще больше, интерферометр смонтировали на огромном блоке мрамора, который поместили в бассейн, заполненный ртутью. По расчетам они должны были бы увидеть эффект движения Земли относительно эфира.
При полном вращении мраморной глыбы с интерферометром интерференционная картина должна была изменяться периодически с двумя пиками и двумя провалами на один скотный двор. Кроме того, поскольку Земля вращается вокруг своей оси фаза этих периодических изменений должна была меняться в зависимости от дня или ночи.
Есперимент не обнаружил ожидаемого изменения интерференционной картины. Смещения, которое ожидалось при предположении, что эфир совсем не увлекается Землей должно быть по расчетам 0,4. Эксперимен показал, что оно не превышает 0,01. Поскольку это смещение пропорционально квадрату скорости, то Майкельсон и Морли в своей статье в American Journal of Science сделали вывод, что скорость Земли относительно эфира может составлять 1 / 6, и безусловно меньше 1 / 4 скорости Земли видноcно Солнца. Поскольку измеренное значеня смещение картины лежало в пределах экспериментальной погрешности, может быть, что скорость Земли относительно эфира вообще нулевая.
Такой вывод согласовывался с гипотезой Стокса, что эфир увлекается Землей. Однако, Хендрик Лоренц показал в 1886, что гипотеза Стокса противоречивых. Таким образом, результат эксперимента не нашел удовлетворительного объяснения. Решение проблемы пришло только после создания Альбертом Эйнштейном теории относительности.

Опытом Майкельсона-Морли я заинтересовался еще во времена моей учебы в университете – давно это было. Здесь у меня подборка из интернета – несколько «нарезок» в сокращенном виде:

Специальная теория относительности была разработана Альбертом Эйнштейном и его предшественниками на основе, главным образом, опыта Майкельсона-Морли (1881, 1887 гг.), не выявившего эфирного дрейфа (ether drift) - эксперимента по определению скорости движения Земли относительно светоносной среды (эфира).

Суть опыта Майкельсона-Морли заключалась в том, что в интерферометре использовался расщепленный световой луч, который проходил прямой и обратный путь в продольном и поперечном направлениях по отношению к движению поверхности Земли. Результирующий пучок света, возвратившегося на полупрозрачное зеркало, позволял наблюдать интерференционную картину смещения интерференционных полос и выявлять малейшую десинхронизацию двух лучей - запаздывание одного луча относительно другого.

Этот опыт был проведён в конце XIX в и позднее, у разных экспериментаторов показав либо «нулевые» (или «отрицательные»), либо положительные результаты с определённым звёздным апексом. Различные специалисты, вплоть до нобелевских лауреатов, подвергают критике как саму постановку экспериментов, подобных опытам Майкельсона-Морли, так и полученные на их основе теоретические выкладки.

Это и не удивительно, ведь по результатам эксперимента Майкельсона–Морли была создана специальная теория относительности. Значение эксперимента действительно трудно переоценить, ибо он должен был подтвердить наличие светоносной среды – эфира, гипотезу которого после этого эксперимента релятивисты отвергли и приняли теорию относительности. И хотя отсутствие, согласно опытам Майкельсона-Морли, «эфирного ветра» еще не доказывало отсутствие эфира, релятивисты из своего позитивистского идеалистического понимания «простоты» научной концепции, решили от него избавиться. В то время позитивисты объявили субстанциональные понятия вроде «материи» пережитками метафизики.

Искушенный читатель понимает, что для обожествления идеи требуются совершенно иные качества психики, чем строгий научный подход. Механизмы генезиса и экспансии релятивизма ничем особенным не отличаются от аналогичных процессов зарождения и распространения, скажем, религиозных верований и мифов.

Я, признаюсь, когда интересовался этим опытом , никаких доказательств теории относительности в нем не нашел – мозги, наверное, устроены не так как у гениев. Речь там шла о попытках замера скорости света в направлениях вдоль и поперек движения поверхности Земли. Эта скорость, согласно интерпретации результатов замеров в опытах Майкельсона-Морли и их последователей, оказалась одинаковой, т.е. постоянной. Ну и что? Скорость звука в неподвижном воздухе тоже постоянна во всех направлениях – в стране слепых из этого факта могли бы тоже соорудить какую-то сногсшибательную теорию. Да и вообще, с какого перепугу скорость света не должна быть постоянной в пределах Земли. Разве инертная масса, которой обладают и частицы света, зависит от перемещения вдоль или поперек движению Земли, или есть хотя бы гипотеза на этот счет?

Семиков С.А. Доклад по дисциплине "История и методология науки " от 20.12.2008

Был мир земной кромешной тьмой окутан.
Да будет свет – и вот явился Ньютон.
Но Сатана недолго ждал реванша:
Пришёл Эйнштейн. И стало всё как раньше.

Что же привело к столь радикальному пересмотру классической механики? Началось всё в 1881 г. с опыта Майкельсона. В опыте делалась попытка установить скорость движения Земли в эфире – среде, в которой согласно электродинамике распространялся свет. Для этого сравнивали времена движения луча света в интерферометре Майкельсона-Морли вдоль и поперёк скорости движения Земли. Понятно, что скорость света в эфире вдоль и поперёк получилась бы разная и разными бы вышли времена движения. Но опыт обнаружил равенство времён, что говорило о ложности теории эфира и основанной на нём максвелловской электродинамики. Однако учёные уже настолько уверовали в электродинамику, что предпочли видоизменить механику, дабы подогнать результат опыта под электродинамику.

Четверостишие, приведенное выше, если не ошибаюсь, это две эпиграммы в переводе Самуила Маршака. Не имея возражений против воззрений автора доклада, я позволю себе придраться к фактору использования языка – раздел ведь относится к терминологии: раздел сайта я имею ввиду. Так вот, правильное использование языка предполагает, с моей точки зрению, и правильную интерпретацию сообщений, сооруженных посредством слов. А с этой точки зрения никакой такой скорости света или «равенства времен» в опыте Майкельсона-Морли не замерялось. Фиксировались лишь результаты интерференции волн, по которой судили о скорости света. При этом делалась масса произвольных, хотя и более-менее правдоподобных допущений. Допущений о том, что скорость света в прямом и обратном направлениях его движения одинакова; о том, что частота света в этих направлениях тоже одинакова; о том, что временем отражения света можно пренебречь; о том, что процесс взаимодействия прибора со световым лучом не вносит искажения в интерференцию, и прочая.

В моих примечаниях по поводу опыта Майкельсона-Морли так и было записано: Опыт обнаружил не «равенство времен», а лишь результат замеров, который, в частности, можно интерпретировать как равенство времен.

Теги: опыт Майкельсона-Морли, классическая механика

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Опыт Майкельсона – Морли. Опыт Физо. Подготовил учитель физики КГУ «Урицкая средняя школа №1» Иванов Ю.Д.

2 слайд

Описание слайда:

Общий вид интерферометра в перспективе. Изображение из доклада А. Майкельсона по результатам его экспериментов, выполненных в 1881 г. Около 1880 года Майкельсон придумал оптический прибор исключительно высокой точности, который назвал интерферометром. Целью первого эксперимента (1881) было измерение зависимости скорости света от движения Земли относительно эфира.

3 слайд

Описание слайда:

Эксперимент Майкельсона - Морли и показавший, что наблюдаемое смещение несомненно меньше 1/20 теоретического и, вероятно, меньше 1/40. В теории неувлекаемого эфира смещение должно быть пропорционально квадрату скорости, поэтому результаты равносильны тому, что относительная скорость Земли в эфире меньше 1/6 её орбитальной скорости.

4 слайд

Описание слайда:

В 1887 году два американских физика - Альберт Майкельсон и Генри Морли - решили совместно провести эксперимент, призванный раз и навсегда доказать скептикам, что светоносный эфир реально существует, наполняет Вселенную и служит средой, в которой распространяются свет и прочие электромагнитные волны. Майкельсон обладал непререкаемым авторитетом как конструктор оптических приборов, а Морли славился как неутомимый и непогрешимый физик-экспериментатор. Придуманный ими опыт проще описать, чем провести практически.

5 слайд

Описание слайда:

6 слайд

Описание слайда:

7 слайд

Описание слайда:

Теория распространения света как колебаний особой среды - светоносного эфира - появилась в XVII веке. В 1727 году английский астроном Джеймс Брэдли объяснил с её помощью аберрацию света. Предполагалось, что эфир неподвижен, но после опытов Физо возникло предположение, что эфир частично или полностью увлекается в ходе движения вещества. Джеймс Брэдли

8 слайд

Описание слайда:

В 1925 г. Майкельсон и Гэль у Клиринга в Иллинойсе уложили на земле водопроводные трубы в виде прямоугольника. Диаметр труб 30 см. Трубы AF и DE были направлены точно с запада на восток, EF, DA и CB - с севера на юг. Длины DE и AF составляли 613 м; EF, DA и CB - 339,5 м. Одним общим насосом, работающим в течение трех часов, можно откачать воздух до давления 1 см ртутного столба. Чтобы обнаружить смещение, Майкельсон сравнивает в поле зрительной трубы интерференционные полосы, получаемые при обегании большого и малого контура. Один пучок света шёл по часовой стрелке, другой против. Смещение полос, вызываемое вращением Земли, разные люди регистрировали в различные дни при полной перестановке зеркал. Всего было сделано 269 измерений. Теоретически предполагая эфир неподвижным, следует ожидать смещения полосы на 0,236±0,002. Обработка данных наблюдений дала смещение 0,230±0,005, таким образом подтвердив существование и величину эффекта Саньяка.

9 слайд

Описание слайда:

Впервые скорость света лабораторным методом удалось измерить французскому физику Арману Иполлиту Луи Физо

10 слайд

Описание слайда:

Схема опыта Физо Луч света от источника разделяется полупрозрачной пластинкой на два луча, один из которых, отражаясь от зеркал, проходит через текущую в трубах воду по направлению её движения, а другой - против её движения. После этого оба луча попадают в интерферометр, где и наблюдается интерференционная картина. Измерения производились сначала при неподвижной воде, а затем - при движущейся, со скоростью 7 м/c. По смещению интерференционных полос определялась разность времён прохождения лучей в движущейся и неподвижной среде, а следовательно, и величина (коэффициент увлечения). В рамках теории относительности нет необходимости в гипотезе частичного увлечения. Фактически свет полностью «увлекается» средой, а результат опыта Физо свидетельствует о неклассическом (релятивистском) сложении скоростей. Таким образом, опыт сыграл важную роль при построении электродинамики движущихся сред и явился одним из экспериментальных обоснований теории относительности Эйнштейна.

Бернард Джефф

5. Эксперимент Майкельсона – Морли

Школа прикладной науки Кейса, открывшая двери студентам в 1881 году и впоследствии преобразованная в Технологический институт Кейса, помещалась в принадлежавшем ранее Кейсу доме на Роквилл-стрит, неподалеку от центральной площади Кливленда. Первое, что предстояло сделать Майкельсону по вступлении в свои обязанности, – это оборудовать лабораторию в подсобном строении на территории школы.

По соседству с владением Кейса располагался университет «Уестерн Резерв», переведенный в Кливленд летом 1882 года из Гудзона (штат Огайо). Через дорогу, в сотне метров от лаборатории Майкельсона, находился Адельберт-холл – одно из зданий университета, где работал профессор химии Эдвард У. Морли.

Майкельсон и Морли вскоре познакомились и сблизились на почве общих научных интересов. Они вместе ездили на научные конференции в Балтимору, Монреаль и другие города, и чем лучше узнавали друг друга, тем больше крепла их взаимная симпатия и уважение.

Внешне эти двое ученых казались весьма разными. Морли был на пятнадцать с лишним лет старше Майкельсона и вел свой род от англичан-переселенцев, покинувших Британские острова еще в начале XVII века. Отец его был священник-конгрегационалист, а сам он в 1864 году закончил духовную семинарию в Эндовере (штат Массачусетс) и готовился принять духовный сан Его карьера являет пример того, как увлечение превращается в дело всей жизни. Не получив подходящей духовной кафедры, он занялся химией, которой до этого только занимался любительски. В 1868 году университет «Уестерн Резерв» предложил ему пост профессор, химии и естественной философии. Морли был очень религиозен и время от времени произносил проповеди в окрестных церквах. Более того, он согласился принять пост профессора в «Уестерн Резерв» только при условии, что ему будет разрешено регулярно читать проповеди в часовне университета.

Что касается Майкельсона, то он был очень далек от религии. Отец его был атеистом, и в жизни их семьи религия не занимала никакого места. Таким образом, он не приобщился к древней вере своих праотцев и всю жизнь был неверующим. Воспитание детей в духе религии он доверил жене. Восхищаясь чудесами природы, он тем не менее отказывался приписывать их некоему творцу. Однажды звездной ночью, показывая и называя своим детям созвездия на небе, он сказал: «Названия созвездий вы можете и забыть, но людей, которые не преклоняются перед чудесами природы, я считаю недостойными уважения». Как-то раз он писал: «Что может сравниться по красоте с великолепным соответствием средств природы и ее целей и с тем неизменным правилом закономерности, которое управляет самыми, казалось бы, беспорядочными и сложными из ее проявлений?» Однако идеи бога он не признавал.

Майкельсон был хорош собой, строен и всегда безукоризненно одет. Морли одевался, мягко выражаясь, небрежно и полностью отвечал бы стереотипному представлению о рассеянном профессоре, если бы не живость движений, энергия и разговорчивость. Он носил длинную до плеч шевелюру и огромные рыжие усы, торчавшие чуть ли не до ушей. Он был женат, но бездетен.

Однако у Майкельсона и Морли было много общего. Оба любили музыку. Майкельсон хорошо играл на скрипке, а Морли был превосходный органист. Оба отличались изобретательностью по части точных измерительных приборов и необыкновенной тщательностью в работе. Морли, как и Майкельсон, не упускал ни одной мелочи и, так же как и он, взявшись за исследование какой-либо научной проблемы, не отступал, пока не доводил дело до конца.

До встречи с Майкельсоном Морли, проверяя сообщения о разном процентном содержании кислорода в разных образцах воздуха, предпринял исследование относительного веса кислорода и водорода в составе чистой воды. Это исследование заняло почти двадцать лет. Он провел тысячи опытов, многие за собственный счет. Он проанализировал методом электролиза бесчисленное количество образцов дистиллированной воды и синтезировал воду методом электрической искры, соединяя заданные количества двух элементов. В результате многолетних исследований он определил вес этих элементов до пятого десятичного знака. Литр кислорода весит 1,42900 г, а водорода 0,89873 г, с возможной ошибкой в одну трехсоттысячную. Эти величины были повсеместно приняты за стандартные, как и полученное Морли отношение водорода к кислороду 1,0076 к 16. Эксперименты Морли были классическими и завоевали ему мировое признание.

Влияние движения среды на скорость света

Лорд Кельвин и лорд Рэлей просили Майкельсона проверить влияние движения среды на скорость света. Майкельсон решил в качестве движущейся среды взять воду и своим замыслом поделился с Морли. Тот предложил ему для работы свою лабораторию. Она помещалась в большой подвальной комнате, и условия в ней были идеальными для задуманного Майкельсоном опыта. Морли не был специалистом-физиком, но он был сообразителен, находчив и увлечен проблемой. В 1860 году, еще студентом он одно время работал в области астрономии. Майкельсон рассказал ему о стоящей перед ними задаче и о приборе, который он думает применить. Морли готов был немедленно приступить к работе. Однако в сентябре 1885 года, когда работа над опытом находилась еще в начальной стадии, Майкельсон явился утром в лабораторию в совершенно жалком виде. Он заявил Морли, что страдает от нервного истощения и нуждается в длительном отдыхе. Он сказал, что ему нужно уехать из Кливленда по крайней мере на год. Не согласится ли Морли самостоятельно закончить прибор, провести опыты и опубликовать результаты? Он передал Морли некую сумму, полученную им на проведение опытов, и добавил еще 100 долларов своих. Затем Морли получил от Майкельсона письмо из Нью-Йорка. Они регулярно переписывались по поводу эксперимента. Четыре месяца спустя Майкельсон неожиданно приехал в Кливленд и предложил продолжать работу совместно. Здоровье его значительно улучшилось и он смог довести опыт до конца. В 1886 году в «Америкэн джорнал оф сайанс» за подписями обоих появилась работа «Влияние движения среды на скорость света» . Майкельсон и Морли обнаружили, что движение воды оказывает влияние на скорость света, но не такое, какое можно ожидать из теории эфира. Их опыт подтвердил результаты исследований, проделанных Физо в 1851 году. Сразу два учебных заведения – Университет «Уестерн Резерв» и Институт технологии Стивенса присудили Майкельсону степень доктора философии. Эта была первая ученая степень Майкельсона, поскольку в его время Морская академия еще не имела права присуждать звание бакалавра наук.

Теперь, обладая усовершенствованным прибором и обогатив свой опыт, Майкельсон смог вернуться к эксперименту с эфиром, который он так долго откладывал. В этой работе Морли тоже должен был принимать участие. Они были полны самых радужных надежд, и Морли писал отцу 17 апреля 1887 года: «Мы с Майкельсоном приступили к новому эксперименту, который должен показать, одинакова ли скорость распространения света в любых направлениях. Я не сомневаюсь, что мы получим окончательный ответ». Разумеется, Морли несколько упрощенно определял цель опыта. Майкельсон и Морли собирались предпринять решительную попытку «изловить» неуловимый эфир. В случае положительного результата наука получит не только скорость движения Земли по орбите относительно эфира, но и скорость ее вращения вокруг своей оси, а, может быть, даже метод определения скорости движения в пространстве всей солнечной системы. Это была бы первая попытка при помощи локального оптического явления определить абсолютное движение Земли в пространстве, которое отождествлялось с эфиром.

Прибор Майкельсона – Морли

Сконструированный ими прибор оказался весьма массивным сооружением. Он состоял из каменной плиты площадью примерно 150 кв.см и толщиной около 30 см. На плите было установлено четыре зеркала, сделанные из сплава меди, олова и мышьяка, а также все прочее оборудование, включая горелку Аргана. Чтобы обеспечить строго горизонтальное положение каменной плиты и избежать погрешностей за счет вибрации, трения и натяжений, плита плавала в ртути, очищенной Морли. Ртуть наливалась в кольцеобразный чугунный сосуд с толщиной стенок около 1,5 см; поверх ртути плавала деревянная подставка в форме бублика, а на ней уже устанавливалась каменная плита. Осевой стержень обеспечивал концентричность деревянного поплавка и чугунного сосуда. Промежуток между стенкой сосуда и наружным ободком поплавка составлял меньше 1,5 см (рис. 9).

Рис. 9. Установка Майкельсона – Морли.
Большая и очень тяжелая каменная плита покоилась на деревянном поплавке, помещенном в жидкую ртуть. Сосуд с ртутью имел форму бублика. Плавая в жидкости, каменная плита и деревянная подставка сохраняли строго горизонтальное положение.

Чугунный сосуд покоился на опоре, представлявшей собой низкий пологий кирпичный восьмиугольник, внутрь которого был залит цемент. Фундамент интерферометра уходил глубоко в землю, до коренной породы, так как верхний слой почвы не был достаточно устойчивым. По окружности сосуда, на одинаковом расстоянии одна от другой, было сделано шестнадцать отметок. Деревянный чехол защищал оптическую часть прибора (зеркало на каждом углу плиты) от воздушных потоков и внезапных изменений температуры.

Сопротивление движению тяжелого аппарата было сведено до минимума, и, приложив незначительную силу по его окружности, можно было придать ему медленное, плавное и непрерывное вращение. Один полный оборот совершался примерно за 6 минут. Наблюдатель ходил вокруг аппарата, передвигаясь одновременно с вращающейся каменной плитой, и периодически останавливался, заглядывая в маленькую зрительную трубу, чтобы проверить, не произошло ли смещения интерференционных полос. Такое смещение означало бы изменение скорости света в этом направлении (рис. 10).

Рис. 10. Интерферометр в установке Майкельсона – Морли.
Принцип его действия тот же, что и прибора, показанного на рис. 8.

На регулировку этого уникального прибора ушло несколько месяцев. В конце концов Майкельсон добился, что он регистрировал малейшее смещение интерференционных полос. Морли и Майкельсон поочередно ходили вокруг прибора и глядели в зрительную трубу.

Они предполагали, что в течение года должно быть два дня, когда будет наблюдаться максимальный эффект смещения (если только такой эффект вообще существует). В какой-то один день Земля будет двигаться в направлении, прямо противоположном тому, в котором она двигалась в тот, другой день.

Они проводили наблюдения ежедневно в двенадцать часов дня и в шесть часов вечера в шестнадцати различных направлениях. Напрягая зрение, они вглядывались в интерференционные полосы, пытаясь определить их смещение.

Опыты были закончены в июле 1887 года. Когда все результаты были сведены воедино и проанализированы, все подсчеты сделаны и неоднократно проверены, исследователи оказались перед лицом упрямого факта, разрушавшего всю стройную теорию. Против всякого ожидания, смещения того порядка, которого требовала гипотеза неподвижного эфира, обнаружено не было. Это было похоже на смертный приговор представлению о неподвижном эфирном океане. Майкельсон довольно благосклонно относился к теории неподвижного эфира и надеялся, что опыт позволит его обнаружить. Как же иначе могли распространяться электромагнитные колебания, в том числе световые волны? Опять результат тонко задуманного и блестяще выполненного эксперимента привел Майкельсона в полное недоумение.

«Величайший из всех отрицательных результатов»

Майкельсон и Морли послали свое сообщение в «Америкэн джорнал оф сайанс» . Оно было озаглавлено: «Об относительном движении Земли и светоносного эфира». В том же году оно было также напечатано в английском журнале «Филозофикал мэгэзин». Вывод Майкельсона стал известен ученым всего мира. В каком бы направлении ни двигался наблюдатель, уловимой разницы в скорости света не обнаруживалось. Иными словами, приходилось признать невероятное: как бы быстро вы ни бежали за светом, догнать его невозможно. Он по-прежнему будет убегать от вас со скоростью 300 000 км в секунду. Такое заключение противоречило всему человеческому опыту. Самолет, который летит со скоростью 600 км в час при попутном ветре, дующем со скоростью 50 км в час, делает относительно какой-нибудь неподвижной точки 650 км в час. Если же он летит против ветра, его скорость уменьшится до 550 км в час. Поскольку Земля движется вокруг Солнца со скоростью примерно 30 км в секунду, скорость светового луча, идущего в одном с Землей направлении, должна быть больше скорости луча, идущего в обратном направлении. Однако опыт Майкельсона опровергал это предположение.

Английский физик и философ Джон Д. Бернал назвал открытие Майкельсона и Морли «величайшим из всех отрицательных результатов в истории науки». Однако Майкельсон не был окончательно обескуражен результатами своего опыта. Хотя существование неподвижного эфира ими исключалось, оставалась еще одна возможность, что «Земля увлекает за собой эфир, придавая ему почти ту же скорость, с какой движется сама, так что скорость движения эфира по отношению к поверхности Земли равна нулю или очень мала».

Через десять лет после опубликования этого исторического сообщения Майкельсон экспериментально проверил «вторую гипотезу, послав два световых луча по периметру вертикально поставленного прямоугольника, стороны которого были равны 15 и 60 м. Результаты не подтвердили этой гипотезы.

Майкельсон не был убежден, что «провал» его опыта окончательно решает вопрос. «Поскольку результат опыта был отрицательным, проблема по-прежнему ждет своего решения», – публично заявил он. А в утешение себе он привел довольно неожиданный довод: «На мой взгляд, эксперимент не прошел впустую, поскольку поиски разрешения этой проблемы привели к изобретению интерферометра. Я думаю, что все признают, что изобретение интерферометра вполне компенсирует отрицательный результат данного опыта».

Много лет спустя, выступая в обсерватории Маунт-Вильсон перед ученой аудиторией, Майкельсон дал совсем другую оценку относительной важности эксперимента с эфиром и изобретения интерферометра. Он признал, что его утверждение о большей ценности инструмента противоречило «некоторым важным теоретическим соображениям», потрясшим научный мир. Как выяснилось за истекшие годы, Майкельсон, сам того не подозревая, заготовил материал, из которого в Европе была построена одна из величайших научных теорий всех времен. Это один из редких случаев, когда первоначальное открытие было сделано в Америке и уже позднее использовано в Европе. Почти всегда получалось наоборот.