Портал о ремонте ванной комнаты. Полезные советы

Собой конструкцию из двух. Двухсторонний мольберт: развиваемся рисуя! Расчет лестницы при проектировании

Катушка Тесла представляет собой высокочастотный резонансный трансформатор без ферромагнитного сердечника, с помощью которого можно получить высокое напряжение на вторичной обмотке. Под действием высокого напряжения в воздухе происходит электрический пробой, подобно разряду молнии. Устройство изобретено Николой Теслой, и носит его имя.

По типу коммутирующего элемента первичного контура, катушки Тесла подразделяются на искровые (SGTC – Spark gap Tesla coil), транзисторные (SSTC – Solid state Tesla coil, DRSSTC – Dual resonant solid state Tesla coil). Я буду рассматривать только искровые катушки, являющиеся самыми простыми и распространенными. По способу заряда контурного конденсатора, искровые катушки делятся на 2 типа: ACSGTC – Spark gap Tesla coil, а также DCSGTC – Spark gap Tesla coil. В первом варианте, заряд конденсатора осуществляется переменным напряжением, во втором используется резонансный заряд с подведением постоянного напряжения.


Сама катушка представляет собой конструкцию из двух обмоток и тора. Вторичная обмотка цилиндрическая, наматывается на диэлектрической трубе медным обмоточным проводом, в один слой виток к витку, и имеет обычно 500-1500 витков. Оптимальное соотношение диаметра и длины обмотки равно 1:3,5 – 1:6. Для увеличения электрической и механической прочности, обмотку покрывают эпоксидным клеем или полиуретановым лаком. Обычно размеры вторичной обмотки определяют исходя из мощности источника питания, то есть высоковольтного трансформатора. Определив диаметр обмотки, из оптимального соотношения находят длину. Далее подбирают диаметр обмоточного провода, так чтобы количество витков примерно равнялось общепринятому значению. В качестве диэлектрической трубы обычно применяют канализационные пластиковые трубы, но можно изготовить и самодельную трубу, при помощи листов чертежного ватмана и эпоксидного клея. Здесь и далее речь идет о средних катушках, мощностью от 1 кВт и диаметром вторичной обмотки от 10 см.

На верхний конец трубы вторичной обмотки устанавливают полый проводящий тор, обычно выполненный из алюминиевой гофрированной трубы для отвода горячих газов. В основном диаметр трубы подбирают равным диаметру вторичной обмотки. Диаметр тора обычно составляет 0,5-0,9 от длины вторичной обмотки. Тор имеет электрическую емкость, которая определяется его геометрическими размерами, и выступает в роли конденсатора.

Первичная обмотка располагается у нижнего основания вторичной обмотки, и имеет спиральную плоскую или коническую форму. Обычно состоит из 5-20 витков толстого медного или алюминиевого провода. В обмотке протекают высокочастотные токи, вследствие чего скин-эффект может иметь значительное влияние. Из-за высокой частоты ток распределяется преимущественно в поверхностном слое проводника, тем самым уменьшается эффективная площадь поперечного сечения проводника, что приводит к увеличению активного сопротивления и уменьшению амплитуды электромагнитных колебаний. Поэтому лучшим вариантом для изготовления первичной обмотки будет полая медная трубка, или плоская широкая лента. Над первичной обмоткой по внешнему диаметру иногда устанавливают незамкнутое защитное кольцо (Strike Ring) из того же проводника, и заземляют. Кольцо предназначено для предотвращения попадания разрядов в первичную обмотку. Разрыв необходим для исключения протекания тока по кольцу, иначе магнитное поле, созданное индукционным током, будет ослаблять магнитное поле первичной и вторичной обмотки. От защитного кольца можно отказаться, если заземлить один конец первичной обмотки, при этом попадание разряда не причинит вреда компонентам катушки.

Коэффициент связи между обмотками зависит от их взаимного расположения, чем они ближе, тем больше коэффициент. Для искровых катушек типичное значение коэффициента равно K=0,1-0,3. От него зависит напряжение на вторичной обмотке, чем больше коэффициент связи, тем больше напряжение. Но увеличивать коэффициент связи выше нормы не рекомендуется, так как между обмотками начнут проскакивать разряды, повреждающие вторичную обмотку.


На схеме представлен простейший вариант катушки Тесла типа ACSGTC.
Принцип действия катушки Тесла основан на явлении резонанса двух индуктивно связанных колебательных контуров. Первичный колебательный контур состоит из конденсатора С1, первичной обмотки L1, и коммутируется разрядником, в результате чего образуется замкнутый контур. Вторичный колебательный контур образован вторичной обмоткой L2 и конденсатором С2 (тор обладающий емкостью), нижний конец обмотки обязательно заземляется. При совпадении собственной частоты первичного колебательного контура с частотой вторичного колебательного контура, происходит резкое возрастание амплитуды напряжения и тока во вторичной цепи. При достаточно высоком напряжении происходит электрический пробой воздуха в виде разряда, исходящего из тора. При этом важно понимать, что представляет собой замкнутый вторичный контур. Ток вторичного контура течет по вторичной обмотке L2 и конденсатору С2 (тор), далее по воздуху и земле (так как обмотка заземлена), замкнутый контур можно описать следующим образом: земля-обмотка-тор-разряд-земля. Таким образом, захватывающие электрические разряды представляют собой часть контурного тока. При большом сопротивлении заземления разряды, исходящие из тора будут бить прямо по вторичной обмотке, что не есть хорошо, поэтому нужно делать качественное заземление.

После того как размеры вторичной обмотки и тора определены, можно посчитать собственную частоту колебаний вторичного контура. Здесь надо учитывать, что вторичная обмотка кроме индуктивности обладает некоторой емкостью из-за немалых размеров, которую надо учитывать при расчете, емкость обмотки необходимо сложить с емкостью тора. Далее надо прикинуть параметры катушки L1и конденсатора C1первичного контура, так чтобы собственная частота первичного контура была близка к частоте вторичного контура. Емкость конденсатора первичного контура обычно составляет 25-100 нФ, исходя из этого, рассчитывают количество витков первичной обмотки, в среднем должно получиться 5-20 витков. При изготовлении обмотки необходимо увеличить количество витков, по сравнению с расчетным значением, для последующей настройки катушки в резонанс. Рассчитать все эти параметры можно по стандартным формулам из учебника физики, также в сети есть книги по расчету индуктивности различных катушек. Существуют и специальные программы калькуляторы для расчета всех параметров будущей катушки Тесла.

Настройка осуществляется путем изменения индуктивности первичной обмотки, то есть один конец обмотки подсоединен к схеме, а другой никуда не подключается. Второй контакт выполняют в виде зажима, который можно перекидывать с одного витка на другой, тем самым используется не вся обмотка, а только ее часть, соответственно меняется индуктивность, и собственная частота первичного контура. Настройку выполняют во время предварительных запусков катушки, о резонансе судят по длине выдаваемых разрядов. Существует также метод холодной настройки резонанса при помощи ВЧ генератора и осциллографа или ВЧ вольтметра, при этом катушку запускать не надо. Необходимо взять на заметку, что электрический разряд обладает емкостью, вследствие чего собственная частота вторичного контура может немного уменьшаться во время работы катушки. Заземление также может оказывать небольшое влияние на частоту вторичного контура.

Разрядник является коммутирующим элементом в первичном колебательном контуре. При электрическом пробое разрядника под действием высокого напряжения, в нем образуется дуга, которая замыкает цепь первичного контура, и в нем возникают высокочастотные затухающие колебания, в течение которых напряжение на конденсаторе С1 постепенно уменьшается. После того как дуга гаснет, контурный конденсатор С1 вновь начинает заряжаться от источника питания, при следующем пробое разрядника начинается новый цикл колебаний.

Разрядник подразделяется на два типа: статический и вращающийся. Статический разрядник представляет собой два близко расположенных электрода, расстояние между которыми регулируют так чтобы электрический пробой между ними происходил в то время, когда конденсатор С1 заряжен до наибольшего напряжения, или немного меньше максимума. Ориентировочное расстояние между электродами определяют исходя из электрической прочности воздуха, которая составляет около 3 кВ/мм при стандартных условиях окружающей среды, а также зависит от формы электродов. Для переменного сетевого напряжения, частота срабатываний статического разрядника (BPS – beats per second) составит 100Гц.

Вращающийся разрядник (RSG – Rotary spark gap) выполняется на основе электродвигателя, на вал которого насажен диск с электродами, с каждой стороны диска устанавливаются статические электроды, таким образом, при вращении диска, между статическими электродами будут пролетать все электроды диска. Расстояние между электродами делают минимальным. В таком варианте можно регулировать частоту коммутаций в широких пределах управляя электродвигателем, что дает больше возможностей по настройке и управлению катушкой. Корпус двигателя необходимо заземлить, для защиты обмотки двигателя от пробоя, при попадании высоковольтного разряда.

В качестве контурного конденсатора С1 применяют конденсаторные сборки (MMC – Multi Mini Capacitor) из последовательно и параллельно соединенных высоковольтных высокочастотных конденсаторов. Обычно применяют керамические конденсаторы типа КВИ-3, а также пленочные К78-2. В последнее время намечен переход на бумажные конденсаторы типа К75-25, которые неплохо показали себя в работе. Номинальное напряжение конденсаторной сборки для надежности должно быть в 1,5-2 раза больше амплитудного напряжения источника питания. Для защиты конденсаторов от перенапряжения (высокочастотные импульсы) устанавливают воздушный разрядник параллельно всей сборке. Разрядник может представлять собой два небольших электрода.

В качестве источника питания для зарядки конденсаторов используется высоковольтный трансформатор Т1, или несколько последовательно или параллельно соединенных трансформаторов. В основном начинающие тесластроители используют трансформатор из микроволновой печи (MOT – Microwave Oven Transformer), выходное переменное напряжение которого составляет ~2,2 кВ, мощность около 800 Вт. В зависимости от номинального напряжения контурного конденсатора, МОТы соединяют последовательно от 2 до 4 штук. Применение только одного трансформатора не целесообразно, так как из-за небольшого выходного напряжения зазор в разряднике будет очень малым, итогом будут нестабильные результаты работы катушки. Моты имеют недостатки в виде слабой электропрочности, не рассчитаны для работы в длительном режиме, сильно греются при большой нагрузке, поэтому часто выходят из строя. Более разумно использовать специальные масляные трансформаторы типа ОМ, ОМП, ОМГ, которые имеют выходное напряжение 6,3 кВ, 10 кВ, и мощность 4 кВт, 10 кВт. Можно также изготовить самодельный высоковольтный трансформатор. При работе с высоковольтными трансформаторами не следует забывать о технике безопасности, высокое напряжение опасно для жизни, корпус трансформатора необходимо заземлить. При необходимости последовательно с первичной обмоткой трансформатора можно установить автотрансформатор, для регулировки напряжения зарядки контурного конденсатора. Мощность автотрансформатора должна быть не меньше мощности трансформатора T1.

Дроссель Lд в цепи питания необходим для ограничения тока короткого замыкания трансформатора при пробое разрядника. Чаще всего дроссель находится в цепи вторичной обмотки трансформатора T1. Вследствие высокого напряжения, необходимая индуктивность дросселя может принимать большие значения от единиц до десятков Генри. В таком варианте он должен обладать достаточной электропрочностью. С таким же успехом дроссель можно установить последовательно с первичной обмоткой трансформатора, соответственно здесь не требуется высокая электропрочность, необходимая индуктивность на порядок ниже, и составляет десятки, сотни миллигенри. Диаметр обмоточного провода должен быть не меньше диаметра провода первичной обмотки трансформатора. Индуктивность дросселя рассчитывают из формулы зависимости индуктивного сопротивления от частоты переменного тока.

Фильтр низких частот (ФНЧ) предназначен для исключения проникновения высокочастотных импульсов первичного контура в цепь дросселя и вторичной обмотки трансформатора, то есть для их защиты. Фильтр может быть Г-образным или П-образным. Частоту среза фильтра выбирают на порядок меньше резонансной частоты колебательных контуров катушки, но при этом частота среза должна быть намного больше частоты срабатывания разрядника.


При резонансном заряде контурного конденсатора (тип катушки – DCSGTC), используют постоянное напряжение, в отличии от ACSGTC. Напряжение вторичной обмотки трансформатора T1 выпрямляют с помощью диодного моста и сглаживают конденсатором Св. Емкость конденсатора должна быть на порядок больше емкости контурного конденсатора С1, для уменьшения пульсаций постоянного напряжения. Величина емкости обычно составляет 1-5 мкФ, номинальное напряжение для надежности выбирают в 1,5-2 раза больше амплитудного выпрямленного напряжения. Вместо одного конденсатора можно использовать конденсаторные сборки, желательно не забывая про выравнивающие резисторы при последовательном соединении нескольких конденсаторов.

В качестве диодов моста применяют последовательно соединенные высоковольтные диодные столбы типа КЦ201 и др. Номинальный ток диодных столбов должен быть больше номинального тока вторичной обмотки трансформатора. Обратное напряжение диодных столбов зависит от схемы выпрямления, по соображениям надежности обратное напряжение диодов должно быть в 2 раза больше амплитудного значения напряжения. Возможно изготовление самодельных диодных столбов путем последовательного соединения обычных выпрямительных диодов (например 1N5408, Uобр = 1000 В, Iном = 3 А), с применением выравнивающих резисторов.
Вместо стандартной схемы выпрямления и сглаживания можно собрать удвоитель напряжения из двух диодных столбов и двух конденсаторов.

Принцип работы схемы резонансного заряда основан на явлении самоиндукции дросселя Lд, а также применения диода отсечки VDо. В момент времени, когда конденсатор C1 разряжен, через дроссель начинает течь ток, возрастая по синусоидальному закону, при этом в дросселе накапливается энергия в виде магнитного поля, а конденсатор при этом заряжается, накапливая энергию в виде электрического поля. Напряжение на конденсаторе возрастает до напряжения источника питания, при этом через дроссель течет максимальный ток, и падение напряжения на нем равно нулю. При этом ток не может прекратиться мгновенно, и продолжает течь в том же направлении из-за наличия самоиндукции дросселя. Зарядка конденсатора продолжается до удвоенного значения напряжения источника питания. Диод отсечки необходим для предотвращения перетекания энергии от конденсатора обратно в источник питания, так как между конденсатором и источником питания появляется разность потенциалов равная напряжению источника питания. На самом деле напряжение на конденсаторе не достигает удвоенного значения, из-за наличия падения напряжения на диодном столбе.

Применение резонансного заряда позволяет более эффективно и равномерно передавать энергию на первичный контур, при этом для получения одинакового результата (по длине разряда), для DCSGTC требуется меньшая мощность источника питания (трансформатор Т1), чем для ACSGTC. Разряды приобретают характерный плавный изгиб, вследствие стабильного питающего напряжения, в отличии от ACSGTC, где очередное сближение электродов в RSG может приходиться по времени на любой участок синусоидального напряжения, включая попадание на нулевое или низкое напряжение и как следствие переменная длина разряда (рваный разряд).

Ниже на картинке представлены формулы для расчета параметров катушки Тесла:

Предлагаю ознакомиться с моим опытом постройки .

Входные металлические двойные двери представляют собой конструкцию из двух дверей. Чаще всего это две двери, наружная и внутренняя, причем наружная открывается на лестничную площадку, а внутренняя – в квартиру. В некоторых случаях под словосочетанием «двойные входные двери» подразумевается двустворчатая дверь, но это скорее исключение, нежели правило.

Удобно устанавливать двойные входные двери, когда это позволяет ширина дверного проема и нет второй одностворчатой двери в квартиру. Встречаются проекты домов, где двойная дверь предусмотрена дизайном, и архитектура здания способствует такому выбору. Иногда двойные двери устанавливаются и в соответствии с технологическими ограничениями.

Двойная дверь: повышенная безопасность вашего дома.

По таким же причинам могут быть установлены двойные двери с фрамугами. Их преимущество в том, что они с легкостью позволяют перекрыть проем больших размеров.

Прежде чем вы приступите к выбору двойной металлической двери, стоит обратить внимание на составные части конструкции. Фрамуга – это статичный элемент металлических дверей, который не открывается и изготовлен из тех же материалов, что и остальные части двойной двери. Фрамуга состоит из наружной и внутренней крышки. Для большей прочности она имеет ребра жесткости. Также фрамуга должна обладать отличными изоляционными свойствами: не пропускать тепло и звук.

Двойные входные металлические двери могут быть с разборной фрамугой, или представленной цельным элементом. Благодаря этому, подобные двери могут закрывать проемы разных, в том числе и нестандартных, размеров.

Фрамуга может быть цельносварной с коробкой двери – тогда металлоконструкция будет единой. Но она может быть также съёмной и крепиться отдельно.

Самое основное при выборе двойных входных дверей – выбор параметров фиксированной и поворотной створки. Т.к. подобная конструкция дверей состоит из двух полотен, то помимо основного замкового механизма двери оснащены особым замком, запирающим фиксированную створку. Двустворчатые двери не менее надежные, чем обычные одностворчатые, т.к. их конструкция подразумевает профильную дверную раму. Если вы хотите установить одновременно металлическую и деревянную входные двери, то нужно тщательно сверить их размеры.

Чаще всего двойные металлические входные двери устанавливаются в многоквартирных домах для создания тамбура перед смежными квартирами. Часто встречающаяся ошибка в таких случаях – установка обычной не бронированной железной двери без дополнительных защитных элементов. Поэтому злоумышленнику не составит особого труда открыть такую дверь, а в тамбуре гораздо удобнее вскрыть замки на остальных входных дверях. Поэтому следует позаботиться о безопасности, и тщательно подойти к выбору тамбурной двери.

Тамбурные двери служат для контроля доступа в помещение.Поэтому в большинстве случаев такие двери не утепляются.

Если же двустворчатые входные двери устанавливаются как наружные, то обязателен козырек над ними, чтобы уменьшить воздействие на двери солнечных лучей, перепада температур и прочих воздействий.

Виды двойных дверей

Двойные металлические двери могут быть установлены как самостоятельная конструкция, либо в тандеме с деревянной одностворчатой дверью. Самые распространенные варианты установки:

Кроме подобной конструкции, двойные входные двери могут состоять из двух створок. Это довольно удобно – если вам нужно занести в дом крупную бытовую технику, вторая створка открывается, значительно увеличивая ширину проема.

Установка двустворчатой двери целесообразна при ширине проема более 110 см. Они могут устанавливаться не только в жилые дома, но и в офисы, общественные здания или производственные помещения – везде, где нестандартная ширина дверного проема не позволит поставить обычную дверь. Двойные двери часто применяются в качестве подъездных.

В зависимости от назначения и комплектации двойные входные двери отличаются такими параметрами:

  • отделка двери (внешняя и внутренняя);
  • вид замковых систем;
  • фурнитура;
  • изоляционные характеристики.

Несмотря на то, что двойные металлические входные двери сами по себе уже нестандартной формы, они могут иметь необычную арочную форму и отделку. Часто вместе с декоративными материалами используется художественная ковка, придавая двери изящный и стильный вид.

Входная дверь, украшенная художественной ковкой, всегда будет уникальной.

Плюсы и минусы металлической двойной двери

Рассмотрим, почему двойные металлические двери набирают популярность и все чаще устанавливаются не только в офисные помещения, но и в качестве входных дверей в квартиру.

  1. Двойные металлические двери обеспечивают высокий класс защиты. Даже если одна дверь будет взломана, вторая задержит злоумышленников до приезда правоохранительных органов.
  2. Двойные двери обеспечивают гораздо лучшую теплоизоляцию, чем одинарные. Если входные двери выходят не в тамбур, а на лестничную площадку, такой параметр особенно важен.
  3. Доступная стоимость. Входные металлические двери не только надежнее, но и дешевле сделанных их дерева. Практически каждый может позволить себе стальные двери.
  4. Если вы поставите металлические двойные двери, вам не придется тратить деньги на их обслуживание. Они не потребуют дополнительных эксплуатационных затрат кроме установки.
  5. Металлические входные двери долговечны и надежны. Качественный металл не деформируется под воздействием атмосферных осадков, хорошо переносит прямые солнечные лучи и физическое воздействие.

Данные выгоды при установке двойных металлических дверей весьма значительны, однако есть и недостатки:

  1. Металл по своей структуре не поддерживает здоровый микроклимат в квартире.
  2. Многие считают металлические двери слишком грубыми.
  3. По сравнению с деревянными, стальные двери хорошо проводят звук.

Двойные металлические двери обеспечат непреступность вашему дому.

Таким образом, входные металлические двери – оптимальное соотношение цены и качества, они незаменимы для квартиры и надежно защитят вас и ваше имущество.

Дети – удивительные создания. Они обладают уникальным взглядом на мир, безграничной фантазией и творческим воображением, которые требуют постоянной подпитки и развития. Рисование, как одно из направлений творческих порывов ребенка, позволяет развивать усидчивость, терпение, концентрацию внимания, что во взрослом возрасте помогает во многих профессиях. Кроме того, рисование развивает двигательную и зрительную память ребенка и мелкую моторику рук, непосредственным образом влияющую на его речь.

Для развития навыков рисования у своего чада заботливые родители приобретают многочисленные приспособления: карандаши, кисти и краски, альбомы и мел. Но на первых позициях в этом списке гаджетов и инструментов для детей стоят двухсторонние мольберты.

Нужен ли моему ребенку мольберт?

Этим вопросом задаются многие родители, не видящие смысла в приобретении лишних вещей. Однако следует знать, по каким причинам рисование называют важной составляющей в жизни детей.

  1. Развитие мелкой моторики и подготовка руки к письму.
    Правильный захват карандаша, мелка или фломастера приспосабливает детскую руку к определенной форме и положению. Ребенок учится регулировать силу нажима для получения разных линий и штрихов. Развивается кисть руки, пальцы становятся более умелыми и гибкими.
  2. Развитие способностей к творчеству.
    Ребенок, еще не умеющий мыслить типично, шаблонно, видит мир по-особенному. Благодаря этому он придумывает необычные сочетания цветов, очертания предметов и воплощает их на бумаге. У ребенка развивается способность к нестандартным решениям, что помогает ему во взрослой жизни.
  3. Развитие самовыражения.
    Не умея выразить все свои чувства словесно, ребенок может дать им выход на бумаге.
  4. Развитие концентрации.
    Рисование благоприятно сказывается на состоянии нервной системы: концентрируясь на рисунке, ребенок отвлекается от обид, проблем и успокаивается.
  5. Развитие эстетики и вкуса.
    У ребенка закладывается чувство прекрасного, что поможет ему во взрослой жизни. Одеваться со вкусом, ценить и наслаждаться жизнью, открывать каждый раз что-то новое и удивительное – все это возможно благодаря рисованию.

Из вышесказанного можно сделать вывод, что рисование полезно и необходимо для гармоничного развития личности. А может ли рисование нанести вред? Да, но только в том случае, если ребенок слишком долго проводит за рисованием в положении «сидя». Напряженная поза за столом приводит к сутулости и сколиозу. Выходом может стать приобретение мольберта.

Разновидности мольбертов

Детский мольберт представляет собой рисовальную доску, аналог рабочего места художников. Все они классифицируются в зависимости от функционала и материалов, из которого они изготовлены.

Виды по функционалу Описание Достоинства Недостатки
Односторонний, или мольберт-хлопушка Классический аналог взрослого; представляет собой конструкцию из двух рам, одна из которых – рабочая поверхность из шлифованной фанеры, а вторая служит опорой. В большинстве своем оснащены полочкой для карандашей, кистей и фломастеров, что помогает ребенку не отрываться от рисования для поисков инструментов. Отсутствует держатель для бумаги.
Настольный Мини-вариант мольберта-хлопушки высотой не более 50 см. Наиболее компактный (удобно брать с собой в дорогу, детский сад или школу) и доступный по цене. Отъезжает в сторону при рисовании, быстро ломается.
Мольберт-стол Парта-трансформер, рабочая поверхность которой фиксируется в вертикальном и горизонтальном положениях. Может использоваться как стол или мольберт в зависимости от потребностей ребенка; рабочая поверхность — магнитная. Нет возможности рисовать стоя.
Двухсторонний Представляет собой конструкцию из двух рам, оснащенных рабочими поверхностями, или классическую форму мольберта – треногу – с двухсторонней доской. Помогает всесторонне развиваться ребенку и приучает пользоваться всеми инструментами для рисования. Подходит для большой семьи с несколькими детьми. Не выявлено.

В зависимости от материала, из которого изготовлен детский мольберт, он может быть деревянным, металлическим или пластмассовым. Кроме того, все они складываются, что дает возможность убрать их в любое время и сэкономить пространство. Из всех разновидностей детские двухсторонние мольберты наиболее универсальны и функциональны.

Возможности двухстороннего мольберта

Двухсторонний мольберт – это 2 рабочие поверхности (грифельная черная и металлическая белая) и прилагающийся к ним комплект инструментов, который включает:

  • разноцветные мелки для рисования на грифельной черной рабочей поверхности;
  • маркеры на водной основе для рисунков на металлической белой рабочей поверхности;
  • губку для стирания;
  • цифры и буквы русского или английского алфавита на магнитах.

Мольберты от проверенных, качественных фирм также оснащены полочкой или пеналом, использующимися в качестве подставки под рисовальные принадлежности, и держателем для листа бумаги.

С помощью этого многофункционального мольберта ребенка можно научить:

  • рисованию мелками, карандашами, красками или фломастерами;
  • чтению букв и составлению слогов, слов;
  • цифрам и счету,
  • играм с карточками на магнитах.

С какого возраста стоит приобретать ребенку двухсторонний мольберт?

Однозначно на этот вопрос ответить нельзя, поскольку развитие и увлечения каждого ребенка индивидуальны. В большинстве инструкций к двухсторонним мольбертам начальный возраст варьируется от 1,5 до 3-х лет. Но если ребенок выказывает потребность к рисованию раньше «положенного» возраста, задумайтесь о покупке. Тем более что купить детский двухсторонний мольберт сейчас не представляется чем-то сложным: их продажа осуществляется в магазинах и интернете.

Критерии выбора правильного мольберта в детскую

Прежде чем совершить ответственную покупку, стоит обдумать все те параметры, которым должен отвечать хороший, качественный и правильно подобранный для ребенка двухсторонний мольберт.

  1. Высота. Рисуя, ребенок не должен сутулиться, нагибаться или приподниматься на цыпочки. Если вы хотите, чтобы мольберт не стал единоразовой покупкой, а долгие годы радовал вас и ваше чадо, приобретайте «растущий» мольберт: в нем есть функция регулирования высоты ножек.
  2. Материал изготовления. На стадии покупки следует решить, из какого материала вам нужен детский мольберт: пластика, дерева или металла. У каждого из них есть свои плюсы и минусы.
Из пластика Достоинства
  1. Легкий.
  2. Яркий.
Недостатки
  1. Пластик может легко треснуть при падении.
  2. Необходимо выяснять качество пластика: низкокачественный пластик может быть токсичен и спровоцирует аллергическую реакцию у ребенка.
Из дерева Достоинства
  1. Дерево – экоматериал (нетоксичный, неаллергенный).
  2. Практичен и долговечен.
Недостатки
  1. Дерево – идеальная среда для развития болезнетворных бактерий.
  2. Для ребенка слишком тяжел: ребенок не сможет его передвинуть самостоятельно.
  3. Чувствителен к воде.
  4. Вся поверхность должна быть хорошо отшлифована, иначе есть риск пораниться или получить занозу.
Из металла Достоинства
  1. Устойчивость.
  2. Высокая прочность.
Недостатки
  1. Холодный: при случайном прикасании ребенку может стать неприятно.
  2. Нужно искать облегченные модели.
  3. Размер рисовальной доски. Следует выбирать доски, исходя из размеров рабочего места в комнате ребенка. При этом необходимо учесть, что слишком маленькая доска не даст ребенку широкого простора фантазий, как средняя или большая.
  4. Дизайн. Производители детских товаров предлагают многочисленные цветовые решения как однотонные, так и с нанесением красивых картинок. Совершайте покупку, ориентируясь на вкус ребенка.

Если покупка двухстороннего мольберта была хорошо обдумана по всем перечисленным пунктам, то он сможет долгие годы радовать вас и вашего ребенка!

Как правильно разместить мольберт в детской

  • спортивная, оборудованная шведской стенкой, качелями или турником;
  • спальная, оборудованная кроватью, прикроватной тумбочкой и ночником;
  • игровая.

Именно в игровой зоне следует размещать мольберт для детей младшего возраста. При этом важно учитывать необходимость хорошего освещения: свет должен падать с левой стороны, не загораживая рисунка. Лучше всего размещать у окна. Под опорные ножки следует подложить бумагу или клеенку: юный художник в порыве творческого процесса может мелками, красками или фломастерами испачкать ковер.


Если с возрастом тяга ребенка к рисованию не пройдет, есть смысл развивать его увлечения более серьезно и перенести мольберт в учебную зону.

Двухсторонние мольберты для детей — превосходные рисовальные, игровые и обучающие инструменты, способные всесторонне развить ребенка и приобщить его к творческой среде. Современные мольберты являются многофункциональными и безопасными для ребенка: они изготавливаются из высококачественных материалов и проходят соответствующую сертификацию. Если вы выбрали для ребёнка именно двухсторонний мольберт, то купить его можно в любом детском магазине или в интернете, выбирая из большого списка товаров тот, который идеально подойдет вашему малышу. Повлияйте на будущее вашего чада — подарите ему мольберт! И пусть он развивается рисуя!

Строящиеся сегодня дома настолько разнообразны, что возводимые конструкции порой приобретают совершенно причудливый вид. Особенно архитекторы любят экспериментировать с кровлей, которую делают и плоской для пикников, и прозрачной для зимнего сада, и в виде причудливого цветка.

Однако, наиболее практичными остаются самые простые варианты, такие как двухскатная крыша. Рассмотрим устройство стропильной системы двухскатной крыши в этой статье.

С помощью этой конструкции создается большое чердачное пространство, не требующее специального утепления, поэтому она весьма популярна при строительстве жилых домов.

К тому же она проста в установке в отличие, например, от четырехскатной и не требует больших вложений при монтаже.

Двухскатная крыша представляет собой конструкцию из двух прямоугольных поверхностей, верхними частями соединенных друг с другом, а нижними опирающихся на стены дома.

Таким образом, у крыши остаются незакрытыми две треугольные части в торцах — фронтоны. Эти части либо выполняют глухими, либо используют для устройства входа на чердак.

Очень удобно использовать получившееся чердачное помещение под дополнительную комнату, которую можно использовать в теплое время. А если приложить усилия и утеплить ее, то вы получите полноценное помещение, пригодное для жизни и зимой.


Основные части стропильной крыши видны на приведенном рисунке:

  • мауэрлат, удерживающий всю конструкцию на стенах;
  • стропила, образующие саму крышу;
  • обрешетка, на которую крепится покрытие крыши;
  • коньковый прогон, соединяющий две плоскости крыши вверху;
  • стойки и подкосы, дополнительно укрепляющие крышу.

Конструкция стропил может быть двух видов:

  • висячие;
  • наклонные.

Висячие стропила закрепляются только в двух точках – на коньке и на стенах. Поэтому их конструкция подвергается двум видам нагрузки – сжатие и изгиб. Наклонные помимо этого еще в средней своей части опираются на промежуточные опоры, что значительно уменьшает изгибающие нагрузки.

Наиболее эффективным способом устройства стропильной системы двухскатной крыши является сочетание висячих и наклонных стропил. Такое сочетание увеличивает прочность конструкции и уменьшает расход материалов.

Благодаря такой простоте конструкции двухскатная крыша имеет ряд преимуществ:

  • простота исполнения и ремонта при появлении повреждений;
  • небольшая стоимость работ и материалов;
  • высокая износостойкость и прочность;
  • малая вероятность протечек, так как у такой крыши нет стыков различных поверхностей, конструкция практически цельная;
  • возможность устройства полноценной жилой зоны на чердаке.

Расчет

Перед монтажом стропильной системы необходимо обязательно провести ее расчет. Это требует усидчивости и внимательности, все расчеты необходимо перепроверить пару раз. Остаться в разгар работ без нужных стройматериалов или, наоборот, закупить лишнее обойдется вам гораздо дороже.

В случае, если монтаж двухскатной крыши производится по детальному проекту, необходимо провести выборку всех элементов ее конструкции с обозначением размеров и количества каждой позиции. Используя принципы рационального раскроя, складывают объемы по:

  • видам пиломатериалов (м.п.);
  • пароизоляционному материалу (м 2);
  • кровельному покрытию (количество в шт, м 2);
  • утеплителю (м 2).

Для удобства расчетов лучше всего рассчитать отдельно площадь каждого простого элемента отдельно, а затем сложить полученные результаты.

Для наглядности расчетов просчитаем несколько вариантов кровли для домов одинаковой длины 8 м и шириной 4, 5, 6, 7 и 8 м. Определимся, что угол при вершине крыши (у конька С) у них будет одинаковым – 120°. Углы ската крыши в точках крепления к мауэрлату (А и В) тоже в этом случае будут одинаковыми – по 30°.

Начинаем с расчета высоты крыши Н, она вычисляется по формуле

Длина стропил АС согласно теореме прямоугольного треугольника, рассчитывается как половина ширины дома АВ, деленная на синус ½ угла α при вершине

АС = ½АВ / sin(α/2) + 0,5 м

К полученной величине требуется прибавить длину карнизного свеса, который составляет от 0,5 до 0,8 м.

Общее количество материала, который нам потребуется для изготовления стропил, вычисляем как произведение длины одного стропила на требуемое число стропил.

Шаг стропил выбираем из стандартного диапазона 0,6-1 м.

Определяем для нашего расчета, что шаг стропил будет 0,7 м.

В местности, где существует повышенный уровень скапливание снега, необходимо усилить стропильную систему — установить сплошную обрешетку и спаренные стропила.

Итак, из полученных результатов составим таблицу, изучая которую, можно понять, как ширина здания влияет на количество материалов, необходимых для устройства стропильной системы двухскатной крыши.

Обратите внимание, что по приведенным формулам рассчитывается точная величина материалов. В продаже доски, черепица, шифер и все другие материалы имеются только определенных размеров. Вы вряд ли приобретете доски для стропил длиной 5,12 м. Возможно, самый близкий размер будет 7 или даже 8 м, и лишнее вы вынуждены будете отпиливать.

При расчете и покупке материала обязательно следует учесть то, что в продаже он имеется только фиксированных размеров, не совпадающих с вашими, и часть его уйдет в отходы.

Конечно, окончательный расчет количества требуемых материалов лучше доверить специалистам, но, пользуясь предложенной схемой, вы можете предварительно определить, какие расходы вас ожидают.

Монтаж

Устанавливать стропильную систему можно двумя способами:

  • монтировать стропила непосредственно на месте установки;
  • монтировать стропильные пары (ферму) на земле и поднимать наверх.

Первый способ требует меньших физических усилий, а второй позволяет использовать широкую строительную площадку и уменьшает риск падения с высоты.

«Фермой» называют пару стропильных ног, соединенных между собой в соответствии с проектом.

Необходимый инструмент

От того, как вы подготовитесь к работам, напрямую зависит то, насколько быстро и качественно их проведете и насколько удобно будет вам работать.

Для работ по устройству стропильной системы необходимы:

  • топор;
  • молотки, разного веса и вида;
  • гвоздодер;
  • шуруповерт;
  • ножовки или бензопила;
  • болгарка;
  • дрель с набором сверл и зенкером;
  • длинная рулетка;
  • строительный уровень и отвес;
  • карандаш, маркер для нанесения разметки;
  • строительный шнур;
  • крепежная фурнитура: уголки, планки, гвозди и саморезы.

Изготовление шаблона

Для облегчения соединения стропил в фермы и соблюдения одинаковых размеров следует изготовить шаблон, по которому стропила будут отрезаться и соединяться. Для этого используют две длинных доски, соединив их в виде буквы А в точном соответствии с размерами будущей крыши. Затем каждую стропильную пару подгоняют под этот шаблон и закрепляют, постепенно формируя кровельную систему.

Жесткость возводимой конструкции напрямую зависит от того, насколько качественно и прочно закреплены между собой стропила. Для увеличения прочности на местах соединений следует использовать специальные металлические накладки.

Крепление стропил к мауэрлату

Важнейший элемент при монтаже кровли – крепление стропил к мауэрлату.

Оно может проводиться двумя способами:

  • жесткое;
  • скользящее.


Жесткое крепление стропил к мауэрлату исключает каких-либо воздействий на получившееся соединение – сдвигов, поворотов, изгибов. Такой прочности можно добиться, крепя стропила при помощи опорных запилов, брусков, металлических уголков, использовать скобы и гвозди. Дополнительно можно закрепить стропила к стене анкерами или проволокой.

Скользящее крепление стропил к мауэрлату имеет две степени свободы. Такое крепление рекомендуется для крыш деревянных домов. Стропила при этом имеют возможность двигаться вдоль своей продольной оси. Для этого их помещают в специальные пропилы мауэрлата, исключающие боковые перемещения, но позволяющие двигаться вверх-вниз. Такие ограничители можно также выполнить из двух ограничивающих крупных гвоздей или специальной пластины.

Установка ферм

Фермы устанавливаются по торцам здания, и между ними туго натягивается шнур. Шнур должен быть строго горизонтален, что контролируется уровнем. Если один из его концов оказывается выше другого, то ферму, к которой он привязан, потребуется немного опустить.

Чтобы исключить провисание стропильной системы от нагрузки, требуется усилить специальными подкосами средние стропила.

Остальные стропила устанавливаются по уровню этого шнура с необходимым шагом и закрепляются раскосами, подпорными балками и другими способами, предусмотренными проектом.

Прежде чем делать расчет лестницы, необходимо рассмотреть основные виды данных конструкций.

Конструкция простой лестницы: 1 - швеллер; 2 - рифленые металлические ступени; 3 - стальные “кобылки”; 4 - места сварки; 5 - кронштейны крепления ступеней.

Прямые лестницы являются самым простым видом данной конструкции. По ней удобно перемещаться, в том числе и переносить тяжелые вещи. Если в доме высокие потолки, а лесенка состоит из более чем 18 ступеней, то рекомендуется устроить промежуточную площадку в середине конструкции. Недостаток данного вида – это большая занимаемая площадь.

Двухмаршевые лестницы имеют промежуточную площадку и могут быть угловой или П-образной формы. Хотя данный тип характеризуется наличием промежуточной площадки, благодаря своей конфигурации конструкция хорошо вписывается практически в любое помещение, в том числе и не столь большого размера. В П-образном типе ширина промежуточной площадки должна быть не меньше ширины обоих маршев, что необходимо учесть при расчете лестницы.

Забежные лестницы представляют собой конструкцию из двух или более маршей, вместо промежуточных площадок в которых используются специальные поворотные (забежные) ступени. Забежные виды требуют минимум свободного места и легко вписываются в ограниченные пространства. Недостатком такого типа является сложность конструирования, сложная схема лестницы, так как все забежные ступени отличаются, имеют свои индивидуальные размеры. А косоуры и перила тоже отличаются сложными искривленными формами. Расчет лестниц данного типа тоже довольно сложен.

Винтовая лестница – это самый экономичный вид. Самый оптимальный радиус составляет 80-90 см. Недостаток такой конструкции – меньшее удобство при передвижении по ней, крутой подъем, а тяжелые и крупногабаритные вещи поднять по ней очень сложно. Винтовой тип отличается сложностью конструкции, расчет лестниц труден, но они имеют привлекательный и эффектный вид.

Такой вид лестницы, как «самба» или «гусиный шаг» тоже отличается своей экономичной конфигурацией. Главной отличительной чертой является схема лестницы, а именно половинные ступени, которые задают последовательность шага в строгом следовании. В зависимости от положения первой ступени подъем всегда будет начинаться с одной определенной ноги (правой или левой). Такой тип отличается своим крутым подъемом. Чаще всего такая схема лестницы используется как вспомогательная, для подъема на чердак, в условиях крайне ограниченного места.

Вернуться к оглавлению

Расчет лестницы при проектировании

Если в доме необходимо установить лестницу, то придется решить немало вопросов. И не только касаемых вида, материалов, но и необходимости провести расчет лестницы.

Ведь мало придумать модель, нужно грамотно вписать ее в помещении, с учетом площади и высоты потолка.

Первый показатель, который необходим для расчета лестницы – это высота от пола одного этажа до кромки пола следующего этажа. Если в доме пока еще черновая отделка, то необходимо учесть толщину отделочного слоя со всеми подложками, выравнивающими материалами и т.п.

После этого рассчитывается количество ступенек. Для этого высоту помещения необходимо поделить на желаемый шаг. При получении дробного числа расчет лестниц требует сделать корректировку в сторону уменьшения или увеличения количества ступеней, согласно которым увеличится или уменьшится шаг.

В каждой лесенке есть и свой постоянный размер: это ширина проступи, размер которой берется в диапазоне от 130 до 225 мм. Параметр показывает, какую длину необходимо оставить для размещения конструкции. Данное расстояние получается в результате перемножения величины проступи на количество ступенек. Также необходимо добавить к полученному числу 80 мм, технический размер, т.е. расстояние, отводимое на выпад первой ступени и часть верхнего модуля. При строительстве лестницы, расчете ее ширины необходимо учесть размеры помещения, и сколько пространства можно выделить под устройство конструкции. Согласно свободной площади и высчитывается величина.

Стоит учесть, что, если лестница немного не вписывается в габариты помещения, можно воспользоваться одной хитростью. Если толщина межэтажного перекрытия составляет более 30 см, то допускается сделать отступ вниз на 15-17 см. Оставшегося расстояния вполне хватит для закрепления конструкции.

Самую важную роль в выборе конструкции играют габариты проема. Если он будет слишком маленьким (например, ширина – 700-900 мм, длина – 1100-1600 мм), то в него можно будет вписать только лестницу «гусиным шагом».

Также схема лестницы, ее форма зависят от желаемого шага подъема ступени и ширины проступи.

Стоит отметить, что чем меньше будет высота шага, тем, соответственно, понадобится больше ступеней, модулей, балясин, перил. И тем длиннее будет лестница.

Вернуться к оглавлению

Формулы для расчета элементов лестниц

Для расчета лестницы существуют несколько формул, которые позволят спроектировать правильную конструкцию.

Среди них соотношение высоты подступенка а к ширине проступи b, которые можно рассчитать по трем формулам:

  • формула удобства: b-а=12 см;
  • формула шага: 2а+b=62 (60-64) см;
  • формула безопасности: а+b=46 см.

Оптимальным является соотношение 17/29, однако допускаются такие отклонения: проступь: 26 ≤ b ≤ 32 в среднем 29, подступенок: 14 ≤ а≤ 20 в среднем 17.

Высота подъема h зависит от высоты комнаты Н и толщины перекрытия D: h=H+D. Количество ступеней n рассчитывается по формуле: n=h/a.

Длина проекции лестницы на плоскость пола l зависит от количества ступенек n и ширины проступи b и вычисляется по формуле: l=b*n.

Далее следует определить крутизну лестницы k. Она зависит от высоты подъема h (высота от пола нижнего этажа до пола верхнего) и длины проекции конструкции на плоскость пола l. Вычисляется крутизна по формуле: k=h/l.