Портал о ремонте ванной комнаты. Полезные советы

Леонард эйлер - швейцарец с русской душой. Биография леонарда эйлера

Эйлер родился 15 апреля 1707 г. в г. Базель, в Швейцарии. Его отец, Пауль Эйлер, был пастором Реформатской церкви. Отец его матери, Маргарита Брукер, также был пастором. У Леонарда было две младшие сестры – Анна Мария и Мария Магдалена. Вскоре после рождения сына, семья переезжает в городок Риен. Отец мальчика был другом Иоганна Бернулли – известного европейского математика, оказавшего большое влияние на Леонарда. В тринадцать лет Эйлер-младший поступает в Базельский университет, и в 1723 г. получает степень магистра философии. В своей диссертации Эйлер сравнивает философии Ньютона и Декарта. Иоганн Бернулли, дававший мальчику по субботам частные уроки, быстро распознаёт выдающиеся способности мальчика к математике и убеждает его оставить раннюю теологию и сосредоточиться на математике.

В 1727 г. Эйлер принимает участие в конкурсе, организованном Парижской академии наук, на лучшую технику установки корабельных мачт. Леонард занимает второе место, в то время как первое достаётся Пьеру Бугеру, который впоследствии станет известен как «отец кораблестроения». Эйлер каждый год принимает участие в этом конкурсе, получив за свою жизнь двенадцать этих престижных наград.

Санкт-Петербург

17 мая 1727 г. Эйлер поступает на службу в медицинское отделение Императорской российской академии наук в Санкт-Петербурге, но почти сразу же переходит на математический факультет. Однако из-за волнений в России, 19 июня 1741 г. Эйлер переводится в Берлинскую академию. Там учёный прослужит около 25 лет, написав за это время более 380 научных статей. В 1755 г. его избирают иностранным членом Шведской королевской академии наук.

В начале 1760-х г.г. Эйлеру поступает предложение обучать наукам принцессу Анхальт-Дессау, которой учёный напишет более 200 писем, вошедших в ставший крайне популярным сборник «Письма Эйлера на разные предметы натуральной философии, адресованные немецкой принцессе». Книга не только наглядно демонстрирует способности учёного рассуждать на всевозможные темы в области математики и физики, но также является выражением его личных и религиозных взглядов. Интересно то, что эта книга известна лучше, чем все его математические труды. Она издавалась как в Европе, так и в Соединённых штатах Америки. Причиной такой популярности этих писем стала удивительная способность Эйлера в доступной форме доносить научные сведения до простого обывателя.

Уникальность этого труда состояла ещё и в том, что в 1735 г. учёный почти полностью ослеп на правый глаз, а в 1766 г. левый его глаз был поражён катарактой. Но, даже несмотря на это, он продолжает свои работы и в 1755 г. пишет в среднем по одной математической статье в неделю.

В 1766 г. Эйлер принимает предложение вернуться в Петербургскую академию, и остаток своей жизни проведёт в России. Однако его второй приезд в эту страну оказывается для него не столь удачным: в 1771 г. пожар уничтожает его дом, а, вслед за этим, в 1773 г. он теряет свою жену Катарину.

Личная жизнь

7 января 1734 г. Эйлер женится на Катарине Гзель. В 1773 г., после 40 лет семейной жизни, Катарина умирает. Спустя три года, Эйлер женится на её сводной сестре, Саломе Абигейл Гзель, с которой и проведёт остаток жизни.

Смерть и наследие

18 сентября 1783 г., после семейного обеда, у Эйлера случается кровоизлияние в мозг, после чего, спустя несколько часов, он умирает. Похоронили учёного на Смоленском лютеранском кладбище на Васильевском острове, рядом с его первой женой Катариной. В 1837 г. Российская академия наук поставила на могиле Леонарда Эйлера бюст на пьедестале, выполненном в форме ректорского кресла, рядом с могильным камнем. В 1956 г., к 250-летию со дня рождения учёного, памятник и останки были перенесены на кладбище XVIII века при монастыре Александра Невского.

В память о его огромном вкладе в науку, портрет Эйлера появился на швейцарских 10-франковых банкнотах шестой серии, а также на ряде российских, швейцарских и немецких марок. В его честь назван астероид «2002 Эйлер». 24 мая лютеранская церковь чтит его память по календарю святых, поскольку Эйлер был убеждённым приверженцем христианства и горячо верил в библейские заповеди.

Система математических обозначений

Среди всех разнообразных работ Эйлера самой заметной является представление теории функций. Он первым ввёл обозначение f(x) – функции “f” по аргументу “x”. Эйлер также определил математические обозначения для тригонометрических функций в том виде, в каком мы знаем их сейчас, ввёл литеру “e” для основания натурального логарифма (известную как «число Эйлера»), греческую букву “Σ” для итоговой суммы и букву “i” для определения мнимой единицы.

Анализ

Эйлер утвердил применение показательной функции и логарифмов в аналитических доказательствах. Он открыл способ разложения различных логарифмических функций в степенной ряд, а также успешно доказал применение логарифмов к отрицательным и комплексным числам. Таким образом, Эйлер значительно расширил математическое применение логарифмов.

Этот великий математик также подробно объяснил теорию высших трансцендентных функций и представил новаторский подход к решению квадратных уравнений. Он открыл технику расчёта интегралов с применением сложных пределов. Разработал он и формулу вариационного исчисления, получившую название «уравнение Эйлера-Лагранжа».

Теория чисел

Эйлер доказал малую теорему Ферма, тождества Ньютона, теорему Ферма о суммах двух квадратов, а также значительно продвинул доказательство теоремы Лагранжа о сумме четырёх квадратов. Он внёс ценные дополнения в теорию совершенных чисел, над которой с увлечением трудился не один математик.

Физика и астрономия

Заметный вклад внёс Эйлер в решение уравнения пучка Эйлера-Бернулли, ставшего одним из основных уравнений, применяемых в инженерном деле. Свои аналитические методы учёный применял не только в классической механике, но и в решении небесных задач. За свои достижения в области астрономии Эйлер получил многочисленные награды Парижской академии. Основываясь на знании истинной природы комет и рассчитав параллакс Солнца, учёный чётко вычислил орбиты комет и других небесных тел. С помощью этих расчётов были составлены точные таблицы небесных координат.

Оценка по биографии

Новая функция! Средняя оценка, которую получила эта биография. Показать оценку

Эйлер вычислял без всякого видимого усилия, как человек дышит или как орёл парит над землёй.

Доминик Араго

Математические формулы у Эйлера жили своей собственной жизнью и рассказывали ему важные и существенные данные о природе вещей. Ему было достаточно только коснуться их, как они из немых букв преображались в красноречивые фразы, дающие глубокий и значительный ответ на различные вопросы.

Современник Эйлера

Вместе с Петром I и Ломоносовым, Эйлер стал добрым гением нашей Академии, определившим её славу, её крепость, её продуктивность.

С.И. Вавилов

Леонард Эйлер (15 апреля 1707 - 18 сентября 1783) - швейцарский, немецкий и российский учёный, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук. Он стал первым, кто в своих работах начал возводить последовательное здание анализа бесконечно малых. Только после его исследований, изложенных в грандиозных томах его трилогии «Введение в анализ», «Дифференциальное исчисление» и «Интегральное исчисление», анализ стал вполне оформившейся наукой - одним из самых глубоких научных достижений человечества. Почти полжизни провёл в России, где внёс существенный вклад в становление российской науки. Эйлер хорошо знал русский язык и часть своих сочинений (особенно учебники) публиковал на русском. Первые русские академики-математики (С.К. Котельников) и астрономы (С.Я. Румовский) были учениками Эйлера. Некоторые из потомков Эйлера до сих пор живут в России.

Леонард Эйлер родился в швейцарском городе Базеле. Отец его, Павел Эйлер, был пастором в Рихене (близ Базеля) и имел некоторые познания в математике. Отец предназначал своего сына к духовной карьере, но сам, интересуясь математикой, преподавал её и сыну, надеясь, что она ему впоследствии пригодится в качестве интересного и полезного занятия. По окончании домашнего обучения тринадцатилетний Леонард был отправлен отцом в Базель для слушания философии.

Среди других предметов на этом факультете изучались элементарная математика и астрономия, которые преподавал Иоганн Бернулли. Вскоре Бернулли заметил талантливость юного слушателя и начал заниматься с ним отдельно.

Получив в 1723 году степень магистра, после произнесения речи на латинском языке о философии Декарта и Ньютона, Леонард, по желанию своего отца, приступил к изучению восточных языков и богословия. Но его всё больше влекло к математике. Эйлер стал бывать в доме своего учителя, и между ним и сыновьями Иоганна Бернулли - Николаем и Даниилом - возникла дружба, сыгравшая очень большую роль в жизни Эйлера.

В 1725 году братья Бернулли были приглашены в члены Петербургской академии наук, недавно основанной императрицей Екатериной I. Уезжая, Бернулли обещали Леонарду известить его, если найдётся и для него подходящее занятие в России. На следующий год они сообщили, что для Эйлера есть место, но, однако, в качестве физиолога при медицинском отделении академии. Узнав об этом, Леонард немедленно записался в студенты медицины Базельского университета. Прилежно и успешно изучая науки медицинского факультета, Эйлер находит время и для математических занятий. За это время он написал напечатанную потом, в 1727 году, в Базеле диссертацию о распространении звука и исследование по вопросу о размещении мачт на корабле.

В столице Российской Империи молодого спеца, меньше чем за год научившегося довольно бегло говорить по-русски, тут же загрузили работой, причем, не всегда связанной с математикой. Дефицит специалистов привел к тому, что ученого то заряжали заданиями по картографии, то требовали письменных консультаций для кораблестроителей и артиллеристов, то поручали конструирование пожарных насосов, а то и вовсе вменяли в обязанность составление придворных гороскопов. Все эти задания Эйлер аккуратно исполнял, и только требования по вопросам астрологии категорически переадресовывал к придворным астрономам. Предсказания в России всегда были делом повышенной опасности и требовали особой осторожности.

В Петербурге имелись самые благоприятные условия для расцвета гения Эйлера: материальная обеспеченность, возможность заниматься любимым делом, наличие ежегодного журнала для публикации трудов. Здесь же работала самая большая тогда в мире группа специалистов в области математических наук, в которую входили Даниил Бернулли (его брат Николай скончался в 1726 году), разносторонний Х. Гольдбах, с которым Эйлера связывали общие интересы к теории чисел и другим вопросам, автор работ по тригонометрии Ф.Х. Майера, астроном и географ Ж.Н. Делиль, математик и физик Г.В. Крафт и другие. С этого времени Петербургская академия стала одним из главных центров математики в мире.

Открытия Эйлера, которые благодаря его оживлённой переписке нередко становились известными задолго до издания, делают его имя всё более широко известным. Улучшается его положение в Академии наук: в 1727 году он начал работу в звании адъюнкта, то есть младшего по рангу академика, а в 1731 году он стал профессором физики, т.е. действительным членом академии. В 1733 году получил кафедру высшей математики, которую до него занимал Д. Бернулли, возвратившийся в том же году в Базель. Рост авторитета Эйлера нашёл своеобразное отражение в письмах к нему его учителя Иоганна Бернулли. В 1728 году Бернулли обращается к «учёнейшему и даровитейшему юному мужу Леонарду Эйлеру», в 1737 году - к «знаменитейшему и остроумнейшему математику», а в 1745 году - к «несравненному Леонарду Эйлеру - главе математиков».

В 1735 году академии потребовалось выполнить весьма сложную работу по расчёту траектории кометы. По мнению академиков, на это нужно было употребить несколько месяцев труда. Эйлер взялся выполнить это в три дня и исполнил работу, но вследствие этого заболел нервною горячкою с воспалением правого глаза, которого он и лишился. Вскоре после этого, в 1736 году, появились два тома его аналитической механики. Потребность в этой книге была большая; немало было написано статей по разным вопросам механики, но хорошего трактата по механике не имелось.

В 1738 году появились две части введения в арифметику на немецком языке, в 1739 году - новая теория музыки. Затем в 1840 году Эйлер написал сочинение о приливах и отливах морей, увенчанное одной третью премии Французской академии; две других трети были присуждены Даниилу Бернулли и Маклорену за сочинения на ту же тему.

В конце 1740 года после смерти императрицы Анны Иоанновны царем стал малолетний Иоанн IV. Правившая в это время империей регент Иоанна Анна Леопольдовна наукам никакого внимания не уделяла, и Академия постепенно приходила в запустение. «Предвиделось нечто опасное, - писал потом Эйлер в автобиографии. - После кончины достославной императрицы Анны при последовавшем тогда регентстве… положение начало представляться неуверенным». Поэтому ученый воспринял приглашение Фридриха как подарок судьбы и тут же подал прошение, в котором писал: «Того ради нахожусь принужден, как ради слабого здоровья, так и других обстоятельств, искать приятнейшего климата и принять от его Королевского Величества Прусского учиненное мне призывание. Того ради прошу Императорскую Академию наук всеподданнейше меня милостиво уволить и снабдить для моего и домашних моих проезду потребным пашпортом».

Несмотря на общее прохладное отношение к науке, государственная администрация вовсе не горела желанием вот так запросто отпускать уже признанное мировое светило. С другой стороны, и не отпустить было нельзя. Поэтому, в результате недолгих переговоров, от математика удалось получить обещание, даже проживая в Берлине всячески помогать России. Взамен ему присвоили звание почетного члена Академии с окладом 200 рублей. Наконец, 29 мая 1741 года все документы были выправлены, и уже в июне Эйлер, вместе со всем своим семейством, женой, детьми и четырьмя племянниками прибыл в Берлин.

Говорят, что когда на балу, устроенном в честь приезда в Берлин знаменитого математика Леонарда Эйлера, королева-мать спросила ученого, почему он так немногословен, тот ответил: «Прошу меня простить, но я только что из страны, где за лишнее слово могут повесить». Однако через 25 лет он опять вернулся в эту «ужасную страну». Так велико для него было притяжение России.

В Берлине Эйлер поначалу собрал около себя небольшое учёное общество, а затем был приглашён в состав вновь восстановленной Королевской академии наук и назначен деканом математического отделения. В 1743 году он издал пять своих мемуаров, из них четыре по математике. Один из этих трудов замечателен в двух отношениях. В нём указывается на способ интегрирования рациональных дробей путём разложения их на частные дроби и, кроме того, излагается обычный теперь способ интегрирования линейных обыкновенных уравнений высшего порядка с постоянными коэффициентами.

Вообще большинство работ Эйлера посвящено анализу. Эйлер так упростил и дополнил целые большие отделы анализа бесконечно малых, интегрирования функций, теории рядов, дифференциальных уравнений, начатые уже до него, что они приобрели примерно ту форму, которая за ними в большой мере сохраняется и до сих пор. Эйлер, кроме того, начал целую новую главу анализа - вариационное исчисление. Это его начинание вскоре подхватил Лагранж и, таким образом, сложилась новая наука.

В 1744 году Эйлер напечатал в Берлине три сочинения о движении светил: первое - теория движения планет и комет, заключающая в себе изложение способа определения орбит из нескольких наблюдений; второе и третье - о движении комет.

Семьдесят пять работ Эйлер посвятил геометрии. Часть из них хотя и любопытна, но не очень важна. Некоторые же просто составили эпоху. Во-первых, Эйлера надо считать одним из зачинателей исследований по геометрии в пространстве вообще. Он первый дал связное изложение аналитической геометрии в пространстве (во «Введении в анализ») и, в частности, ввёл так называемые углы Эйлера, позволяющие изучать повороты тела вокруг точки.

В работе 1752 года «Доказательство некоторых замечательных свойств, которым подчинены тела, ограниченные плоскими гранями», Эйлер нашёл соотношение между числом вершин, рёбер и граней многогранника: сумма числа вершин и граней равна числу рёбер плюс два . Такое соотношение предполагал ещё Декарт, но Эйлер доказал его в своих мемуарах. Это в некотором смысле первая в истории математики крупная теорема топологии - самой глубокой части геометрии.

Занимаясь вопросами о преломлении лучей света и написав немало мемуаров об этом предмете, Эйлер издал в 1762 году сочинение, в котором предлагается устройство сложных объективов с целью уменьшения хроматической аберрации. Английский художник Долдонд, открывший два различной преломляемости сорта стекла, следуя указаниям Эйлера, построил первые ахроматические объективы.

В 1765 году Эйлер написал сочинение, где решает дифференциальные уравнения вращения твёрдого тела, которые носят название Эйлеровых уравнений вращения твёрдого тела.

Много написал учёный сочинений об изгибе и колебании упругих стержней. Вопросы эти интересны не только в математическом, но и в практическом отношении.

Фридрих Великий давал учёному поручения чисто инженерного характера. Так, в 1749 году он поручил ему осмотреть канал Фуно между Гавелом и Одером и дать рекомендации по исправлению недостатков этого водного пути. Далее ему поручено было исправить водоснабжение в Сан-Суси.

Результатом этого стало более двадцати мемуаров по гидравлике, написанных Эйлером в разное время. Уравнения гидродинамики первого порядка с частными производными от проекций скорости, плотности к давлению называются гидродинамическими уравнениями Эйлера.

Покинув Петербург, Эйлер сохранил самую тесную связь с русской Академией наук, в том числе официальную: он был её почётным членом, получал крупную ежегодную пенсию, и со своей стороны, выполнял взятые на себя обязательства в отношении дальнейшего сотрудничества. Слово, данное перед тем, как покинуть Россию, ученый держал строго. Он закупал для нашей академии книги, физические и астрономические приборы, подбирал в других странах сотрудников, сообщая подробнейшие характеристики возможных кандидатов, редактировал математический отдел академических записок, выступал как арбитр в научных спорах между петербургскими учёными, присылал темы для научных конкурсов, а также информацию о новых научных открытиях.

В доме Эйлера на полном пансионе жили отправленные на стажировку молодые русские ученые. Именно здесь он познакомился и подружился с перспективным студентом московских «Спасских школ» Михаилом Ломоносовым, в котором больше всего отмечал «счастливое сочетание теории с экспериментом». Когда в 1747 году президент Академии наук граф Разумовский попросил его дать отзыв о статьях молодого ученого, Эйлер оценил их очень высоко:

Все сии диссертации, не токмо хороши, но и весьма превосходны, ибо он (Ломоносов) пишет о материях физических и химических весьма нужных, которые по ныне не знали и истолковать не могли самые остроумные люди, что он учинил с таким успехом, что я совершенно уверен в справедливости его изъяснений. При сём случае г. Ломоносову должен отдать справедливость, что имеет превосходное дарование для изъяснения физических и химических явлений. Желать должно, чтоб и другия Академии в состоянии были произвести такия откровения, как показал г. Ломоносов.

Надо сказать, что весьма заносчивый, самолюбивый и сложный в общении Михаил Васильевич также до конца дней любил своего берлинского учителя, писал ему дружеские письма и считал одним из величайших ученых мира.

В переписке Эйлера с его другом академиком Петербургской академии наук Гольдбахом мы находим две знаменитые «задачи Гольдбаха»: доказать, что всякое нечётное натуральное число есть сумма трёх простых чисел, а всякое чётное - двух. Первое из этих утверждений было при помощи, весьма замечательного, метода доказано уже в наше время (1937) академиком И.М. Виноградовым, а второе не доказано до сих пор.

Европейская слава и признание заслуг Эйлера всё расли. Но это никак не влияло на холодное отношение к нему властьпредержащих царственных особ Пруссии. Когда в 1759 году умер президент Берлинской Академии наук Мопертюи, Фридрих II долго не мог найти ему замену. Французский ученый-энциклопедист Жан Д`Аламбер, к которому король обратился в первую очередь, отказался от заманчивого предложения, посчитав, что в Берлине есть более достойная кандидатура на этот пост. Наконец Фридрих смирился и таки отдал Эйлеру руководство Академией. Но титул президента присвоить ему отказался категорически.

В России же об Эйлере помнили и очень ценили сотрудничество с ним. Так во время семилетней войны русская артиллерия случайно разрушила дом ученого в Шарлоттенбурге (пригород Берлина). Узнавший об этом фельдмаршал Салтыков тут же возместил ученому все нанесенные потери. А когда весть о неудачном артобстреле достигла императрицы Елизаветы, она распорядилась от себя лично прислать берлинскому другу еще 4000 рублей, что было огромной суммой.

В 1762 году на русский престол заступила Екатерина II, мечтавшая установить в стране «просвещенную монархию». Возвращение в страну видного математика она видела одной из важнейших своих задач. Поэтому вскоре Эйлер получил от нее весьма интересное предложение: возглавить математический класс, получив при этом звание конференц-секретаря Академии и оклад 1800 рублей в год. «А если не понравится, - говорилось в ее поручении дипломатическим представителям, - благоволит сообщить свои условия, лишь бы не медлил приездом в Петербург.»

Эйлер, и правда, благоволил выдвинуть встречные условия:

Пост вице-президента Академии с окладом 3000 рублей;

Ежегодную пенсию 1000 рублей супруге в случае его смерти;

Оплачиваемые должности для троих его сыновей, в том числе пост секретаря Академии для старшего.

Такая дерзость со стороны какого-то математика возмутила представителя императорской администрации, видного российского дипломата графа Воронцова. Однако сама императрица думала по-другому. «Письмо к Вам г. Эйлера, - писала она графу, - доставило мне большое удовольствие, потому что я узнаю из него о желании его снова вступить в мою службу. Конечно, я нахожу его совершенно достойным желаемого звания вице-президента Академии наук, но для этого следует принять некоторые меры, прежде чем я установлю это звание - говорю установлю, так как доныне его не существовало. При настоящем положении дел там нет денег на жалование в 3000 рублей, но для человека с такими достоинствами, как г. Эйлер, я добавлю к академическому жалованию из государственных доходов, что вместе составит требуемые 3000 рублей… Я уверена, что моя Академия возродится из пепла от такого важного приобретения, и заранее поздравляю себя с тем, что возвратила России великого человека».

Получив заверения в том, что все его условия приняты на самом высоком уровне, Эйлер немедленно написал Фридриху заявление с просьбой об отставке. Возможно, из-за нежелания отпускать видного ученого, возможно - из-за негативного к нему отношения, а скорее всего - от всего этого вместе, король не просто отказал, а именно проигнорировал обращение Эйлера, не дав на него никакого ответа. Эйлер написал еще одно прошение. С тем же результатом. Тогда математик просто демонстративно прекратил работу в Академии. Наконец, с просьбой отпустить ученого к королю Пруссии обратилась сама Екатерина. Только после такого высокого вмешательства Фридрих разрешил математику покинуть Пруссию.

В июле 1766 года ученый вместе с 17 домочадцами прибыл в Санкт-Петербург. Сразу же по прибытии он был принят императрицей. Екатерина, теперь уже Вторая, встретила его как августейшую особу и осыпала милостями: пожаловала 8000 рублей на покупку дома на Васильевском острове и на приобретение обстановки, предоставила на первое время одного из своих поваров и поручила подготовить соображения о реорганизации Академии.

Старший из его сыновей Иоганн Альбрехт стал академиком в области физики, Карл занял высокую должность в медицинском ведомстве, Христофора, родившегося в Берлине, Фридрих II долго не отпускал с военной службы, и потребовалось очередное вмешательство Екатерины II, чтобы тот смог приехать к отцу. Христофор был назначен директором Сестрорецкого оружейного завода.

К несчастью, после возвращения в Петербург у Эйлера образовалась катаракта левого глаза - он почти перестал видеть.

Эйлер, при своих гениальных способностях и замечательной памяти, продолжал работать, диктовать свои новые мемуары. Только с 1769 по 1783 год Эйлер продиктовал около 380 статей и сочинений, а за свою жизнь написал около 900 научных работ.

Работа 1769 года «Об ортогональных траекториях» Эйлера содержит блестящие соображения о получении с помощью функции комплексной переменной из уравнений двух взаимно ортогональных семейств кривых на поверхности (т.е. таких линий, как меридианы и параллели на сфере) бесконечного числа других взаимно ортогональных семейств. Работа эта в истории математики оказалась очень важной.

В следующей работе 1771 года «О телах, поверхность которых может быть развёрнута в плоскость» Эйлер доказывает знаменитую теорему о том, что любая поверхность, которую можно получить лишь изгибая плоскость, но не растягивая её и не сжимая, если она не коническая и не цилиндрическая, представляет собой совокупность касательных к некоторой пространственной кривой.

Столь же замечательны работы Эйлера по картографическим проекциям.

Можно себе представить, каким откровением для математиков той эпохи явились хотя бы работы Эйлера о кривизне поверхностей и о развёртывающихся поверхностях. Работы же, в которых Эйлер исследует отображения поверхности, сохраняющие подобие в малом (конформные отображения), основанные на теории функций комплексного переменного, должны были казаться прямо-таки трансцендентными. А работа о многогранниках начинала совсем новую часть геометрии и по своей принципиальности и глубине стояла в ряду с открытиями Евклида.

В 1771 году в жизни Эйлера произошли два серьёзных события. В мае в Петербурге случился большой пожар, уничтоживший сотни зданий, в том числе дом и почти всё имущество Эйлера. Самого учёного с трудом спасли. Все рукописи удалось уберечь от огня; сгорела лишь часть «Новой теории движения луны», но она быстро была восстановлена с помощью самого Эйлера, сохранившего до глубокой старости феноменальную память. Эйлеру пришлось временно переселиться в другой дом.

В сентябре того же года, по особому приглашению императрицы, в Санкт-Петербург прибыл для лечения Эйлера известный немецкий окулист барон Вентцель. После осмотра он согласился сделать Эйлеру операцию и удалил с левого глаза катаракту. Эйлер снова стал видеть. Врач предписал беречь глаз от яркого света, не писать, не читать - лишь постепенно привыкать к новому состоянию. Однако уже через несколько дней после операции Эйлер снял повязку, и вскоре потерял зрение снова. На этот раз - окончательно.

В 1773 году по рекомендации Даниила Бернулли в Петербург приехал из Базеля ученик Бернулли, Никлаус Фусс. Это было большой удачей для Эйлера. Фусс обладал редким сочетанием математического таланта и умения вести практические дела, что и дало ему возможность сразу же после приезда взять на себя заботы о математических трудах Эйлера. Вскоре Фусс женился на внучке Эйлера. В последующие десять лет - до самой своей смерти - Эйлер преимущественно ему диктовал свои труды, хотя иногда пользовался «глазами старшего сына» и других своих учеников.

В 1773 году умерла жена Эйлера, с которой он прожил сорок лет. Через три года он вступил в брак с её сестрой, Саломеей Гзелль. Завидное здоровье и счастливый характер помогали Эйлеру «противостоять ударам судьбы, которые выпали на его долю… Всегда ровное настроение, мягкая и естественная бодрость, какая-то добродушная насмешливость, умение наивно и забавно рассказывать делали разговор с ним столь же приятным, сколь и желанным…» Он мог иногда вспылить, но «был не способен долго питать против кого-либо злобу…» — вспоминал Фусс.

Эйлера постоянно окружали многочисленные внуки, часто на руках у него сидел ребёнок, а на шее лежала кошка. Он сам занимался с детьми математикой. И всё это не мешало ему работать!

Эйлер оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук. С точки зрения математики, XVIII век - это век Эйлера. Если до него достижения в области математики были разрозненны и не всегда согласованны, то Эйлер впервые увязал анализ, алгебру, тригонометрию, теорию чисел и другие дисциплины в единую систему, и добавил немало собственных открытий. Значительная часть математики преподаётся с тех пор «по Эйлеру».

Благодаря Эйлеру в математику вошли общая теория рядов, удивительная по красоте формула Эйлера:

и как следствие, тождество Эйлера связывающее пять фундаментальных математических констант:

операция сравнения по целому модулю, полная теория непрерывных дробей, аналитический фундамент механики, многочисленные приёмы интегрирования и решения дифференциальных уравнений, число e , обозначение i для мнимой единицы, гамма-функция с её окружением и многое другое.

По существу, именно он создал несколько новых математических дисциплин - теорию чисел, вариационное исчисление, теорию комплексных функций, дифференциальную геометрию поверхностей, специальные функции. Другие области его трудов: диофантов анализ, астрономия, оптика, акустика, статистика и т.д. Познания Эйлера были энциклопедичны; кроме математики, он глубоко изучал ботанику, медицину, химию, теорию музыки, множество европейских и древних языков.

Биографы отмечают, что Эйлер был виртуозным алгоритмистом. Он неизменно старался довести свои открытия до уровня конкретных вычислительных методов.

П.Л. Чебышёв писал: «Эйлером было положено начало всех изысканий, составляющих общую теорию чисел». Большинство математиков XVIII века занимались развитием анализа, но Эйлер пронёс увлечение древней арифметикой через всю свою жизнь. Благодаря его трудам интерес к теории чисел к концу века возродился.

Эйлер нашёл доказательства всех теорем Ферма, показал неверность одной из них, а знаменитую Великую теорему Ферма доказал для «трёх» и «четырёх». Эйлер строго доказал эти гипотезы, значительно обобщил их и объединил в содержательную теорию чисел. Он опроверг гипотезу Ферма о том, что все числа вида - простые; оказалось, что делится на 641.

Он также доказал, что всякое простое число вида 4n +1 всегда разлагается на сумму квадратов других двух чисел.

Дал одно из решений задачи о четырёх кубах.

Эйлер показал, что в теории чисел возможно применение методов математического анализа, положив начало аналитической теории чисел.

Ввел дзета-функцию, обобщение которой получило впоследствии имя Римана:

где s вещественно. Эйлер вывел для неё разложение:

где произведение берётся по всем простым числам p . Благодаря этому он доказал, что сумма ряда обратных простых расходится.

Одна из главных заслуг Эйлера перед наукой - монография «Введение в анализ бесконечно малых» (1748). В 1755 году выходит дополненное «Дифференциальное исчисление», а в 1768 - 1770 годах - три тома «Интегрального исчисления». В совокупности это фундаментальный, хорошо иллюстрированный примерами курс, с продуманной терминологией и символикой, откуда многое перешло и в современные учебники. Собственно современные методы дифференцирования и интегрирования были опубликованы в данных трудах.

Основание натуральных логарифмов было известно ещё со времён Непера и Якоба Бернулли, однако Эйлер выполнил настолько глубокое исследование этой важнейшей константы, что с тех пор она носит его имя. Другая исследованная им константа: постоянная Эйлера - Маскерони.

Эйлер делит с Лагранжем честь открытия вариационного исчисления. В 1744 году Эйлер опубликовал первую книгу по вариационному исчислению «Метод нахождения кривых, обладающих свойствами максимума либо минимума».

Эйлер значительно продвинул теорию рядов и распространил её на комплексную область, получив при этом знаменитую формулу Эйлера. Большое впечатление на математический мир произвели ряды, впервые просуммированные Эйлером, в том числе, не поддававшийся до него никому ряд обратных квадратов:

Эйлер был первым, кто широко использовал степенные ряды для выражения функций, например:

Современное определение показательной, логарифмической и тригонометрических функций - тоже его заслуга, так же как и их символика и обобщение на комплексный случай. Формулы, часто именуемые в учебниках «условия Коши - Римана», более правильно было бы назвать «условиями Даламбера - Эйлера».

Он первый дал систематическую теорию интегрирования и используемых там технических приёмов, нашёл важные классы интегрируемых дифференциальных уравнений. Он открыл эйлеровы интегралы - ценные классы специальных функций, возникающие при интегрировании: бета-функция и гамма-функция Эйлера. Одновременно с Клеро вывел условия интегрируемости линейных дифференциальных форм от двух или трёх переменных (1739). Первый ввёл двойные интегралы. Получил серьёзные результаты в теории эллиптических функций, в том числе первые теоремы сложения.

С более поздней точки зрения, действия Эйлера с бесконечными рядами не всегда могут считаться корректными (обоснование анализа было проведено лишь полвека спустя), но феноменальная математическая интуиция практически всегда подсказывала ему правильный результат. Впрочем, дело было не только в интуиции, Эйлер действовал здесь достаточно сознательно, во многих важных отношениях его понимание смысла расходящихся рядов и операций с ними превзошло стандартное понимание XIX века и послужило основой современной теории расходящихся рядов, развитой в конце XIX - начале XX века.

Эйлер много внимания уделял представлению натуральных чисел в виде сумм специального вида и сформулировал ряд теорем для вычисления числа разбиений.

Он исследовал алгоритмы построения магических квадратов методом обхода шахматным конём.

При решении комбинаторных задач он глубоко изучил свойства сочетаний и перестановок, ввёл в рассмотрение числа Эйлера.

Множество работ Эйлера посвящены математической физике: механике, гидродинамике, акустике и др. В 1736 году вышел трактат «Механика, или наука о движении, в аналитическом изложении», знаменующий новый этап в развитии этой древней науки. 29-летний Эйлер отказался от традиционного геометрического подхода к механике и подвёл под неё строгий аналитический фундамент. По существу, с этого момента механика становится прикладной математической дисциплиной.

В 1755 году публикуются «Общие принципы движения жидкостей», в которых положено начало теоретической гидродинамике. Выведены основные уравнения гидродинамики (уравнение Эйлера) для жидкости без вязкости. Разобраны решения системы для разных частных случаев.

Эйлер обобщил принцип наименьшего действия, довольно путано изложенный Мопертюи, и указал на его основополагающее значение в механике. К сожалению, он не раскрыл вариационный характер этого принципа, но всё же привлёк к нему внимание физиков, которые позднее выяснили его фундаментальную роль в природе.

Эйлер много работал в области небесной механики. Он заложил основу теории возмущений, позднее завершённой Лапласом, и разработал очень точную теорию движения Луны. Эта теория оказалась пригодной для решения насущной задачи определения долготы на море, и английское Адмиралтейство выплатило за неё Эйлеру специальную премию.

В 1757 году Эйлер впервые в истории нашёл формулы для определения критической нагрузки при сжатии упругого стержня. Однако в те годы эти формулы не могли найти практического применения.

Несомненно, Эйлер принадлежит к числу гениальнейших математиков всех времен. В истории точных наук его имя ставят рядом с именами Ньютона, Декарта, Галилея. Он был не только математиком, но и физиком, и астрономом. Его труды оказали огромное влияние на развитие этих наук. Нет учёного, имя которого упоминалось бы в учебной математической литературе столь же часто, как имя Эйлера. Великий французский математик Лаплас сказал о работах Эйлера:

Читайте, читайте Эйлера - он наш великий учитель.

Почти сто лет спустя, когда во многих странах - и прежде всего в Англии - стали строить железные дороги, потребовалось рассчитать прочность железнодорожных мостов. Модель Эйлера принесла практическую пользу в проведении экспериментов.

В начале 1780-х годов Эйлер все чаще стал жаловаться на головные боли и общую слабость. 18 сентября 1883 года он вел послеобеденную беседу с академиком Андреем Лекселем. Оба математики и астрономы, они обсуждали недавно открытую планету Уран и ее орбиту. Внезапно Эйлер почувствовал себя плохо. Он только успел сказать: «Я умираю», - после чего сразу потерял сознание. Через несколько часов, незадолго до полуночи, его не стало. Врачи установили, что смерть произошла от кровоизлияния в мозг.

Он был похоронен рядом с первой женой на Смоленском лютеранском кладбище на Васильевском острове. Академия заказала известному скульптору Ж.Д. Рашетту, хорошо знавшему Эйлера, мраморный бюст покойного, а княгиня Дашкова подарила мраморный пьедестал. На надгробном камне высекли слова: «Здесь покоятся бренные останки мудрого, справедливого, знаменитого Леонарда Эйлера».

В 1955 году прах великого математика был перенесён в «Некрополь XVIII века» на Лазаревском кладбище Александро-Невской лавры. Плохо сохранившийся надгробный памятник при этом заменили.

Дети математика так и остались в России. Старший сын, тоже талантливый математик и механик Иоганн Эйлер (1734-1800), как и обещала императрица Екатерина, был секретарем Императорской академии наук, которого сменил Фусс, а в 1826 году - сын Фусса, Павел Николаевич, так что организационной стороной жизни академии около ста лет ведали потомки Леонарда Эйлера. Младший, Христофор (1743-1808), дослужился до генерал-лейтенанта и командовал Сестрорецким оружейным заводом. Внук, Александр Христофорович (1773-1849) стал генералом от артиллерии, героем Отечественной войны 1812 года. Еще один потомок, правда вернувшийся на родину предков, в Швецию, Ханс Карл Август Симон фон Эйлер-Хельпин (1873-1964) стал известным биохимиком, иностранным членом Академии Наук СССР, лауреатом Нобелевской премии по химии за 1929 год. Другую Нобелевскую премию, только уже в 1970 году, получил его сын, шведский биолог Ульф фон Ойлер (1905-1983).

Эйлеровские традиции оказали сильное влияние на П.Л. Чебышева и его учеников: А.М. Ляпунова, А.Н. Коркина, Е.И. Золотарёва, А.А. Маркова и других, определив основные черты петербургской математической школы.

В честь Эйлера названы:

  • улица в Алма-Ате
  • кратер на Луне
  • астероид
  • Международный математический институт им. Леонарда Эйлера Российской Академии наук, основанный в 1988 году в Петербурге
  • благотворительный фонд поддержки отечественных учёных
  • Медаль, с 1993 года ежегодно присуждаемая канадским Институтом комбинаторики и её приложений за достижения в этой области математики.


В 2007 году Центробанк РФ выпустил памятную монету в ознаменование 300-летия со дня рождения Леонарда Эйлера:

Портрет Эйлера помещался также на швейцарскую 10-франковую банкноту

и на почтовые марки Швейцарии, России и Германии.

Имя Эйлера носят следующие математические объекты:

  • теорема Эйлера в теории чисел
  • теорема вращения Эйлера
  • теорема Эйлера в планиметрии
  • теорема Эйлера в комбинаторике
  • гипотеза Эйлера в теории чисел
  • теорема Эйлера для многогранников
  • лемма Эйлера
  • уравнения Эйлера - Лагранжа
  • уравнения Эйлера - Пуассона
  • уравнения Эйлера в механике
  • уравнение Эйлера в гидродинамике
  • эйлеровы точки либрации
  • уравнение Эйлера - Бернулли
  • функция Эйлера в теории чисел
  • функция Эйлера в комплексном анализе
  • тождество Эйлера в теории чисел
  • тождество Эйлера в комплексном анализе
  • тождество Эйлера о четырёх квадратах
  • тождество Эйлера в алгебре многочленов
  • формула Эйлера в комплексном анализе
  • формула Эйлера в кинематике твёрдого тела
  • формула Эйлера в геометрии треугольника
  • формула Эйлера в геометрии четырёхугольника
  • формула Эйлера для суммы первых членов гармоничного ряда.
  • формула Эйлера в теории графов
  • эйлерова характеристика (алгебраическая топология)
  • интегралы Эйлера первого рода и второго рода
  • интеграл Эйлера - Пуассона
  • постоянная Эйлера - Маскерони
  • число Эйлера
  • углы Эйлера
  • многочлены Эйлера
  • преобразование Эйлера
  • прямая Эйлера в геометрии треугольника
  • окружность Эйлера (окружность девяти точек)
  • круги Эйлера
  • эйлеров цикл, эйлерова цепь, эйлеров граф в теории графов
  • эйлеров сплайн
  • эйлерова сила
  • подстановки Эйлера.

По материалам книг: Д. Самин «100 великих учёных» (Москва, «Вече», 2004) и «Шеренга великих математиков» (Варшава, изд. Наша Ксенгарня, 1970), сайта aif.ru и Википедии.

Эйлер Леонард (1707-1783), математик, физик, механик, астроном.

Родился 15 апреля 1707 г. в Базеле (Швейцария). Окончил местную гимназию, слушал в Базельском университете лекции И. Бернулли. В 1723 г. получил степень магистра. В 1726 г. по приглашению Петербургской академии наук приехал в Россию и был назначен адъюнктом по математике.

В 1730 г. занял кафедру физики, а в 1733 г. стал академиком. За 15 лет своего пребывания в России Эйлер успел написать первый в мире учебник теоретической механики, а также курс математической навигации и многие другие труды.

В 1741 г. он принял предложение прусского короля Фридриха II и переехал в Берлин. Но и в это время учёный не порвал связи с Петербургом. В 1746 г. вышло три тома статей Эйлера, посвящённых баллистике.

В 1749 г. он выпустил двухтомный труд, впервые излагающий вопросы навигации в математической форме. Многочисленные открытия, сделанные Эйлером в области математического анализа, были позже объединены в книге «Введение в анализ бесконечно малых величин» (1748 г.).

Вслед за «Введением» вышел трактат в четырёх томах. 1-й том, посвящённый дифференциальному исчислению, вышел в Берлине (1755 г.), а остальные, посвящённые интегральному исчислению, - в Петербурге (1768-1770 гг.).

В последнем, 4-м томе рассматривается вариационное исчисление, созданное Эйлером и Ж. Лагранжем. Одновременно Эйлер исследовал вопрос о прохождении света через различные среды и связанный с этим эффект хроматизма.

В 1747 г. он предложил сложный объектив.

В 1766 г. Эйлер вернулся в Россию. Работу «Элементы алгебры», увидевшую свет в 1768 г., учёный вынужден был диктовать, так как к этому времени он ослеп. Тогда же печатались три тома интегрального исчисления, два тома элементов алгебры, мемуары («Вычисление Кометы 1769», «Вычисление затмения Солнца», «Новая теория Луны», «Навигация» и др.).

В 1775 г. Парижская академия наук в обход статута и с согласия французского правительства определила Эйлера своим девятым (должно быть только восемь) «присоединённым членом».

Эйлеру принадлежит более 865 исследований по самым разнообразным и труднейшим вопросам. Он оказал большое и плодотворное влияние на развитие математического просвещения в России в XVIII в. Петербургская математическая школа, в которую входи ли академики С. К. Котельников, С. Я Румовский, Н. И. Фусс, М. Е. Головин и другие учёные, под руководством Эйлера провела огромную просветительную работу, создала обширную и замечательную для своего времени учебную литературу, выполнила ряд интересных исследований.

За время существования Академии наук в России, видимо, одним из самых знаменитых ее членов был математик Леонард Эйлер (1707-1783).

Он стал первым, кто в своих работах начал возводить последовательное здание анализа бесконечно малых. Только после его исследований, изложенных в грандиозных томах его трилогии «Введение в анализ», «Дифференциальное исчисление» и «Интегральное исчисление», анализ стал вполне оформившейся наукой - одним из самых глубоких научных достижений человечества.

Леонард Эйлер родился в швейцарском городе Базеле 15 апреля 1707 года. Отец его, Павел Эйлер, был пастором в Рихене (близ Базеля) и имел некоторые познания в математике. Отец предназначал своего сына к духовной карьере, но сам, интересуясь математикой, преподавал ее и сыну, надеясь, что она ему впоследствии пригодится в качестве интересного и полезного занятия. По окончании домашнего обучения тринадцатилетний Леонард был отправлен отцом в Базель для слушания философии.

Среди других предметов на этом факультете изучались элементарная математика и астрономия, которые преподавал Иоганн Бернулли Вскоре Бернулли заметил талантливость юного слушателя и начал заниматься с ним отдельно.

Получив в 1723 году степень магистра, после произнесения речи на латинском языке о философии Декарта и Ньютона, Леонард, по желанию своего отца, приступил к изучению восточных языков и богословия. Но его все больше влекло к математике. Эйлер стал бывать в доме свое учителя, и между ним и сыновьями Иоганна Бернулли - Николаем
Даниилом - возникла дружба, сыгравшая очень большую роль в жизни Эйлера.

В 1725 году братья Бернулли были приглашены в члены Петербургской академии наук, недавно основанной императрицей Екатериной I. Уезжая, Бернулли обещали Леонарду известить его, если найдется и для него подходящее занятие в России. На следующий год они сообщили, что для Эйлера есть место, но, однако, в качестве физиолога при медицинском отделении академии. Узнав об этом, Леонард немедленно записался в студенты медицины Базельского университета. Прилежно и успешно изучая
науки медицинского факультета, Эйлер находит время и для математических занятий. За это время он написал напечатанную потом, в 1727 году, в Базеле диссертацию о распространении звука и исследование по вопросу размещении мачт на корабле.

В Петербурге имелись самые благоприятные условия для расцвета гения Эйлера: материальная обеспеченность, возможность заниматься любимым делом, наличие ежегодного журнала для публикации трудов. Здесь же работала самая большая тогда в мире группа специалистов в области математических наук, в которую входили Даниил Бернулли (его брат Николай скончался в 1726 году), разносторонний X. Гольдбах, с которым Эйлера связывали общие интересы к теории чисел и другим вопросам, автор работ по тригонометрии Ф.Х. Майера, астроном и географ Ж.Н. Делиль, математик и физик Г. В. Крафт и другие. С этого времени Петербургская Академия стала одним из главных центров математики в мире.

Открытия Эйлера, которые благодаря его оживленной переписке нередко становились известными задолго до издания, делают его имя все более широко известным. Улучшается его положение в Академии наук: в 1727 году он начал работу в звании адъюнкта, то есть младшего по рангу академика, а в 1731 году он стал профессором физики, т. е. действительным членом Академии. В 1733 году получил кафедру высшей математики, которую до него занимал Д. Бернулли, возвратившийся в том же году в Базель. Рост авторитета Эйлера нашел своеобразное отражение в письмах к нему его учителя Иоганна Бернулли. В 1728 году Бернулли обращается к «ученейшему и даровитейшему юному мужу Леонарду Эйлеру», в 1737 году - к «знаменитейшему и остроумнейшему математику», а в 1745 году - к «несравненному Леонарду Эйлеру - главе математиков».

В 1735 году академии потребовалось выполнить весьма сложную работу по расчету траектории кометы. По мнению академиков, на это нужно было употребить несколько месяцев труда. Эйлер взялся выполнить это в три дня и исполнил работу, но вследствие этого заболел нервною горячкою с воспалением правого глаза, которого он и лишился. Вскоре после этого, в 1736 году, появились два тома его аналитической механики. Потребность в этой книге была большая; немало было написано статей по разным вопросам механики, но хорошего трактата по механике не имелось.

В 1738 году появились две части введения в арифметику на немецком языке, в 1739 году - новая теория музыки. Затем в 1840 году Эйлер написал сочинение о приливах и отливах морей, увенчанное одной третью премии Французской академии; две других трети были присуждены Даниилу Бернулли и Маклорену за сочинения на ту же тему.

В конце 1740 года власть в России попала в руки регентши Анны Леопольдовны и ее окружения. В столице сложилась тревожная обстановка. В это время прусский король Фридрих II задумал возродить основанное еще Лейбницем Общество наук в Берлине, долгие годы почти бездействовавшее. Через своего посла в Петербурге король пригласил Эйлера в Берлин. Эйлер, считая, что «положение начало представляться довольно
неуверенным», приглашение принял.

В Берлине Эйлер поначалу собрал около себя небольшое ученое общество, а затем был приглашен в состав вновь восстановленной Королевской академии наук и назначен деканом математического отделения. В 1743 году он издал пять своих мемуаров, из них четыре по математике. Один из этих трудов замечателен в двух отношениях. В нем указывается на способ интегрирования рациональных дробей путем разложения их на
частные дроби и, кроме того, излагается обычный теперь способ интегрирования линейных обыкновенных уравнений высшего порядка с постоянными коэффициентами.

Вообще большинство работ Эйлера посвящено анализу. Эйлер так упростил и дополнил целые большие отделы анализа бесконечно малых, интегрирования функций, теории рядов, дифференциальных уравнений, начатые уже до него, что они приобрели примерно ту форму, которая занимала в большой мере сохраняется и до сих пор. Эйлер, кроме того, начал целую новую главу анализа - вариационное исчисление. Это его начинание вскоре подхватил Лагранж и таким образом сложилась новая наука.

В 1744 году Эйлер напечатал в Берлине три сочинения о движении светил: первое - теория движения планет и комет, заключающая в себе изложение способа определения орбит из нескольких наблюдений; второе и третье - о движении комет.

Семьдесят пять работ Эйлер посвятил геометрии. Часть из них хотя и любопытна, но не очень важна. Некоторые же просто составили эпоху. Во-первых, Эйлера надо считать одним из зачинателей исследований по геометрии в пространстве вообще. Он первый дал связное изложение аналитической геометрии в пространстве (во «Введении в анализ») и, в частности, ввел так называемые углы Эйлера, позволяющие изучать повороты
тела вокруг точки.

В работе 1752 года «Доказательство некоторых замечательных свойств, которым подчинены тела, ограниченные плоскими гранями», Эйлер нашел соотношение между числом вершин, ребер и граней многогранника: сумма числа вершин и граней равна числу ребер плюс два. Такое соотношение предполагал еще Декарт, но Эйлер доказал его в своих мемуарах Это в некотором смысле первая в истории математики крупная теорема топологии - самой глубокой части геометрии.

Занимаясь вопросами о преломлении лучей света и написав немало мемуаров об этом предмете, Эйлер издал в 1762 году сочинение, в котором предлагается устройство сложных объективов с целью уменьшения хроматической аберрации. Английский художник Долдонд, открывший два различной преломляемости сорта стекла, следуя указаниям Эйлера, построил первые ахроматические объективы.

В 1765 году Эйлер написал сочинение, где решает дифференциальные уравнения вращения твердого тела, которые носят название Эйлеровых уравнений вращения твердого тела.

Много написал ученый сочинений об изгибе и колебании упругих стержней. Вопросы эти интересны не только в математическом, но и в практическом отношении.

Фридрих Великий давал ученому поручения чисто инженерного характера. Так, в 1749 году он поручил ему осмотреть канал Фуно между Гавелом и Одером и дать рекомендации по исправлению недостатков этого водного пути. Далее ему поручено было исправить водоснабжение в Сан-Суси.

Результатом этого стало более двадцати мемуаров по гидравлике, написанных Эйлером в разное время. Уравнения гидродинамики первого порядка с частными производными от проекций скорости, плотности к давлению называются гидродинамическими уравнениями Эйлера.

Покинув Петербург, Эйлер сохранил самую тесную связь с русской Академией наук, в том числе официальную: он был назначен почетным членом, и ему была определена крупная ежегодная пенсия, а он, со своей стороны, взял на себя обязательства в отношении дальнейшего сотрудничества. Он закупал для нашей Академии книги, физические и астрономические приборы, подбирал в других странах сотрудников, сообщая подробнейшие характеристики возможных кандидатов, редактировал математический отдел академических записок, выступал как арбитр в научных
спорах между петербургскими учеными, присылал темы для научных конкурсов, а также информацию о новых научных открытиях и т. д. В доме Эйлера в Берлине жили студенты из России: М. Софронов, С Котельников, С. Румовский, последние позднее стали академиками.

Из Берлина Эйлер, в частности, вел переписку с Ломоносовым, в творчестве которого он высоко ценил счастливое сочетание теории с экспериментом. В 1747 году он дал блестящий отзыв о присланных ему на заключение статьях Ломоносова по физике и химии, чем немало разочаровал влиятельного академического чиновника Шумахера, крайне враждебно относившегося к Ломоносову.

В переписке Эйлера с его другом академиком Петербургской академии наук Гольдбахом мы находим две знаменитые «задачи Гольдбаха»: доказать, что всякое нечетное натуральное число есть сумма трех простых чисел, а всякое четное - двух. Первое из этих утверждений было при помощи весьма замечательного метода доказано уже в наше время (1937) академиком И. М. Виноградовым, а второе не доказано до сих пор.

Эйлера тянуло назад в Россию. В 1766 году он получил через посла в Берлине, князя Долгорукова, приглашение императрицы Екатерины II вернуться в Академию наук на любых условиях. Несмотря на уговоры остаться, он принял приглашение и в июне прибыл в Петербург.

Императрица предоставила Эйлеру средства на покупку дома. Старший из его сыновей Иоганн Альбрехт стал академиком в области физики, Карл занял высокую должность в медицинском ведомстве, Христофора, родившегося в Берлине, Фридрих II долго не отпускал с военной службы, и потребовалось вмешательство Екатерины II, чтобы тот смог приехать к отцу. Христофор был назначен директором Сестрорецкого оружейного
завода.

Еще в 1738 году Эйлер ослеп на один глаз, а в 1771-м после операции почти совсем потерял зрение и мог писать только мелом на черной доске, но благодаря ученикам и помощникам. И.А Эйлеру, А И. Локселю, В.Л. Крафту, С.К. Котельникову, М.Е. Головину, а главное Н И Фуссу, прибывшему из Базеля, продолжал работать не менее интенсивно, чем раньше.

Эйлер, при своих гениальных способностях и замечательной памяти, продолжал работать, диктовать свои новые мемуары. Только с 1769 по 1783 год Эйлер продиктовал около 380 статей и сочинений, а за свою жизнь написал около 900 научных работ.

Работа 1769 года «Об ортогональных траекториях» Эйлера содержит блестящие соображения о получении с помощью функции комплексной переменной из уравнений двух взаимно ортогональных семейств кривых на поверхности (т. е. таких линий, как меридианы и параллели на сфере) бесконечного числа других взаимно ортогональных семейств. Работа эта в истории математики оказалась очень важной.

В следующей работе 1771 года «О телах, поверхность которых может быть развернута в плоскость» Эйлер доказывает знаменитую теорему о том, что любая поверхность, которую можно получить лишь изгибая плоскость, но не растягивая ее и не сжимая, если она не коническая и не цилиндрическая, представляет собой совокупность касательных к некоторой пространственной кривой.

Столь же замечательны работы Эйлера по картографическим проекциям.

Можно себе представить, каким откровением для математиков той эпохи явились хотя бы работы Эйлера о кривизне поверхностей и о развертывающихся поверхностях. Работы же, в которых Эйлер исследует отображения поверхности, сохраняющие подобие в малом (конформные отображения), основанные на теории функций комплексного переменного,
должны были казаться прямо-таки трансцендентными А работа о многогранниках начинала совсем новую часть геометрии и по своей принципиальности и глубине стояла в ряду с открытиями Евклида.

Неутомимость и настойчивость в научных исследованиях Эйлера были таковы, что в 1773 году, когда сгорел его дом и погибло почти все имущество его семейства, он и после этого несчастья продолжал диктовать свои исследования. Вскоре после пожара искусный окулист, барон Вентцель, произвел операцию снятия катаракты, но Эйлер не выдержал надлежащего времени без чтения и ослеп окончательно.

В том же 1773 году умерла жена Эйлера, с которой он прожил сорок лет. Через три года он вступил в брак с ее сестрой, Саломеей Гзелль Завидное здоровье и счастливый характер помогали Эйлеру «противостоять ударам судьбы, которые выпали на его долю. Всегда ровное настроение, мягкая и естественная бодрость, какая-то добродушная насмешливость, умение наивно и забавно рассказывать делали разговор с ним столь
же приятным, сколь и желанным...» Он мог иногда вспылить, но «был не
способен долго питать против кого-либо злобу.. » - вспоминал Н И Фусс.

Эйлера постоянно окружали многочисленные внуки, часто на руках у него сидел ребенок, а на шее лежала кошка. Он сам занимался с детьми математикой. И все это не мешало ему работать.

18 сентября 1783 года Эйлер скончался от апоплексического удара в присутствии своих помощников профессоров Крафта и Лекселя. Он был похоронен на Смоленском лютеранском кладбище Академия заказала известному скульптору Ж.Д. Рашетту, хорошо знавшему Эйлера, мраморный бюст покойного, а княгиня Дашкова подарила мраморный пьедестал.

До конца XVIII века конференц-секретарем Академии оставался И.А. Эйлер, которого сменил Н.И. Фусс, женившийся на дочери последнего, а в 1826 году - сын Фусса Павел Николаевич, так что организационной стороной жизни Академии около ста лет ведали потомки Леонарда Эйлера. Эйлеровские традиции оказали сильное влияние и на учеников
Чебышева: A.M. Ляпунова, А.Н. Коркина, Е.И. Золотарева, А.А. Маркова и других, определив основные черты петербургской математической школы.

Нет ученого, имя которого упоминалось бы в учебной математической литературе столь же часто, как имя Эйлера. Даже в средней школе логарифмы и тригонометрию изучают до сих пор в значительной степени «по Эйлеру».

Эйлер нашел доказательства всех теорем Ферма, показал неверность одной из них, а знаменитую Великую теорему Ферма доказал для «трех» и «четырех». Он также доказал, что всякое простое число вида 4п+1 всегда разлагается на сумму квадратов других двух чисел.

Эйлер начал последовательно строить элементарную теорию чисел. Начав с теории степенных вычетов, он затем занялся квадратичными вычетами. Это так называемый квадратичный закон взаимности. Эйлер также много лет занимался решением неопределенных уравнений второй степени с двумя неизвестными.

Во всех этих трех фундаментальных вопросах, которые больше двух столетий после Эйлера и составляли основной объем элементарной теории чисел, ученый ушел очень далеко, однако во всех трех его постигла неудача. Полное доказательство получили Гаусс и Лагранж.

Эйлеру принадлежит инициатива создания и второй части теории чисел - аналитической теории чисел, в которой глубочайшие тайны целых чисел, например распределение простых чисел в ряду всех натуральных чисел, получаются из рассмотрения свойств некоторых аналитических функций.

Созданная Эйлером аналитическая теория чисел продолжает развиваться и в наши дни.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
(нем. Leonhard Euler МФА: [??l?]); 15 апреля 1707, Базель, Швейцария – 18 сентября 1783, Санкт-Петербург, Россия), выдающийся швейцарский математик и физик, который провел большую часть своей жизни в России и Германии. Традиционное написание "Эйлер" происходит от русск.
Эйлер совершил важные открытия в таких разных областях математики, как математический анализ и теория графов. Он также ввел большую часть современной математической терминологии и обозначений, в частности в математическом анализе, как, например, понятие математической функции. Эйлер известен также благодаря своим работам в механике, динамике жидкости, оптике и астрономии, других прикладных науках.
Эйлер считается выдающимся математиком 18-го века, а возможно даже всех времен. Он также является одним из самых плодотворных – сборник всех его произведений заняла бы 60-80 томов. Влил Эйлера на математику описывает высказывания "Читайте Эйлера, читайте Эйлера, он является мэтром всех нас", которое приписывается Лапласу (фр. Lisez Euler, lisez Euler, c"est notre maitre a tous).
Эйлер увековечен в шестой серии швейцарских 10 франков и на многочисленных швейцарских, немецких и российских почтовых марках. В его честь назван астероидом 2002 Эйлер. Он также отмечен лютеранской церковью в церковном календаре (24 мая) – Эйлер был набожным христианином, верил в библейскую непогрешимость, решительно выступал против выдающихся атеистов своего времени.
http://сайт/uploads/posts/2011-02/1297963607_1back%29.jpeg Швейцарские 10 франков с портретом молодого Эйлера 1707 в немецкоязычной части Швейцарии в семье священника Пауля Эйлера (Paul Euler) и Маргареты Брукнер (Margarethe Bruckner) родился первый сын – Леонард Эйлер. В родном Базеле он посещает гимназию и одновременно берет частные уроки у математика Иоганнеса Буркгардта (Johannes Burckhardt).
С 1720 года учится в университете Базеля и слушает лекции в Иоганна Бернулли. В 1723 получает научное звание магистра за сравнение латыни философий Ньютона и Декарта. От своего замысла изучать также и теологию отказывается в 1725. А 17 мая 1727 по приглашению Даниил Бернулли принимает профессуру в университете Санкт-Петербурга, которая принадлежала к тому Николаусу II Бернулли, умершему в 1726 году. Здесь он знакомится с Кристианом Гольдбаха (Christian Goldbach). 1730 Эйлер получает профессуру физики, а 1733 получает место профессора математики, которое до этого принадлежало Даниэлю Бернулли.
В последующие годы Эйлер постепенно теряет зрение, в 1740 году он ослеп на один глаз.
Мемориальная доска на доме в Берлине, где проживал Эйлер В 1741 принимает приглашение короля Пруссии Фридриха Великого возглавить Берлинскую академию и восстановить ее репутацию, которая находилась в упадке после предыдущего руководителя – придворного шута. Эйлер продолжает переписываться с Кристианом Гольдбаха. После 25 лет в Берлине Эйлер возвращается 1766 в Санкт-Петербург. Причиной этого была также неприязнисть и унижение со стороны деспотического короля.
1771 Эйлер окончательно слепнет, несмотря на это почти половина его трудов возникла во время второго пребывания в Санкт-Петербурге. В этом ему помогают оба сына Иоганн Альбрехт (Johann Albrecht) и Кристоф (Christoph).
1783 Эйлер умирает вследствие кровоизлияния в мозг.
портрет Леонарда Эйлера, выполненный Эмануэлем Гандманном в 1753 г. (находится в музее искусства г. Базель) Эйлер является автором 866 научных публикаций, в частности в областях математического анализа, дифференциальной геометрии, теории чисел, теории графов, приближенных вычисления, небесной механики, математической физики, оптики, баллистики, кораблестроении, теории музыки, оказали значительное влияние на развитие науки. Именно он ввел большинство математических понятий и символов в современную математику, например: f (x), e, ? (пи), мнимая единица i, символ суммы? и многие другие.
Математические обозначения
Эйлер ввел и популяризовал в своих широко распространенных в то время учебниках несколько обозначений. В частности, он представил концепцию функции и впервые написал f (x), чтобы обозначить функцию f примененную к аргументу x. Он также ввел современные обозначения тригонометрических функций, букву e качестве основы натурального логарифма (сейчас известная как число Эйлера), греческую букву? для суммы и букву i, чтобы обозначить мнимую единицу. Использование греческой буквы ?, чтобы обозначить отношение длины окружности к ее диаметру было также спопуляризоване Эйлером, хотя не было им придумано.
Анализ
В восемнадцатом веке происходил значительный прогресс анализа бесконечно малых. Благодаря влиянию Бернулли (друзей семьи Эйлера), исследования в этом направлении стали основными в работах Эйлера. Хотя некоторые из доказательств Эйлера не являются приемлемыми по современным стандартам математической строгости, его идеи привели к значительному прогрессу. Эйлер хорошо известен в анализе с частого использования и развития степенных рядов, выражающих функцию в виде суммы бесконечного множества степенных функций, на пример,

Именно Эйлер прямо доказал расклад в ряд экспоненты и арктангенс (косвенное доказательство через обратные степенные ряды дана Ньютоном и Лейбницем между 1670 и 1680 годами). Использования им степенных рядов позволило решить в 1735 году знаменитую Базельскую проблему, (более строгое доказательство было им совершено в 1741 году):

Геометрический смысл формулы Эйлера Эйлер начал использование в аналитических доказательствах экспоненты и логарифмов. Ему удалось разложить в степенной ряд логарифмическую функцию и, посредством этого расписания, определить логарифмы для отрицательных и комплексных чисел. Он также расширил множество определения экспоненциальной функции на комплексные числа, и обнаружил связь экспоненты с тригонометрическими функциями. Формула Эйлера утверждает, что для любого действительного числа x выполняется равенство:

Частным случаем формулы Эйлера при x = ? есть тождество Эйлера, связывающее пять фундаментальных математических констант:

e i ? + 1 = 0,

Названной Ричардом Фейнманом "самой чудесной математической формулой".. В 1988 году читатели журнала Mathematical Intelligencer в голосовании назвали ее "красивой математической формулой всех времен".
Следствием Формулы Эйлера формула Муавра.
Кроме того, Эйлер разработал теорию специальных трансцендентных функций введя гамма-функцию и представил новые методы решения уравнения четвертой степени. Он также нашел способ вычисления интегралов с комплексными пределами, опережали развитие современного комплексного анализа, и начал вариационное исчисление, в том числе получил его известный результат, уравнения Эйлера-Лагранжа.
Эйлер также был пионером в использовании аналитических методов решения задач теории чисел. Таким образом, он объединил две разрозненные области математики и внедрил новую область исследований, аналитическую теорию чисел. Началом было созданием Эйлером теории гипергеометрических рядов, Q-Series, гиперболических тригонометрических функций и аналитическая теория обобщенных дробей. Например, он доказал бесконечность простых чисел с помощью разногласия гармонического ряда, использовал методы анализа, чтобы узнать о распределении простых чисел. Эйлеровы работы в этой области привели к появлению теоремы о распределении простых чисел.
Теория чисел
Интерес Эйлера теорией чисел можно объяснить влиянием Христиана Гольдбаха, вторая из Санкт-Петербургской Академии. Многие ранних работ Эйлера по теории чисел базировалось на работах Пьера Ферма. Эйлер разработал некоторые идеи Ферма, и опроверг некоторые из его предположений.
Эйлер связал характер распределения простых чисел с идеями по анализу. Он доказал, что сумма обратных к простым числам расходится. В этот способ он обнаружил связь между дзета-функцией Римана и простыми числами, результат известен как "тождество Эйлера в теории чисел".
Эйлер доказал тождества Ньютона, малую теорему Ферма, теорему Ферма о суммах двух квадратов, сделал значительный вклад в теорему Лагранжа о четырех квадраты. Он также изобрел функцию Эйлера? (N), равное числу положительных чисел, не превышающих натурального N и которые являются взаимно простые с N. Используя свойства этой функции, он обобщил малую теорему Ферма к тому, что сейчас называется теоремой Эйлера. Он внес значительный вклад в теорию совершенных чисел, которой математики были очарованы со времен Евклида. Эйлер также достиг прогресса в направлении теоремы о распределении простых чисел и выдвинул гипотезу квадратичной взаимности. Эти два понятия рассматриваются в качестве основных теорем теории чисел, а его идеи подготовили почву для работ Гаусса.
До 1772 года Эйлер доказал, что 2 31 – 1 = 2147483647 является числом Мерсенна. Правдоподобно, это число было наибольшим известным простым до 1867 года.
Теория графов
В 1736 году, Эйлер решил проблему, известную как Семь мостов Кенигсберга. Город Кенигсберг (сегодня Калининград) в Пруссии расположен на реке Преголя и включает два больших острова, которые были связаны друг с другом и с материком семью мостами. Проблема заключается в том, можно найти путь, который проходит каждым мостом ровно один раз и возвращается к исходной точке. Ответ отрицательный: нет цикла Эйлера. Это утверждение считается первой теоремой теории графов, в частности, в теории планарных графов.
Эйлер также доказал формулу V E + F = 2, что связывает число вершин, ребер и граней выпуклого многогранника, а следовательно, и планарных графов (для планарных графов V E + F = 1). Левая сторона формулы, известная теперь как эйлерова характеристика графа (или иного математического объекта), связанная с понятием рода поверхности.
Изучение и обобщение этой формулы, в частности Коши и L"Huillier, были началами топологии.
Прикладная математика
Среди наибольших успехов Эйлера были аналитические решения практических задач, описание многочисленных применений чисел Бернулли, рядов Фурье, диаграмм Венна (известные также как круги Эйлера), чисел Эйлера, констант е и?, цепных дробей и интегралов.
Он соединил дифференциальное исчисление Лейбница с ньютоновской методом флюксий, и создал инструменты, которые сделали применение анализа к физическим проблемам проще. Он добился больших успехов в совершенствовании численное приближение интегралов, изобрел то, что в настоящее время известно как метод Эйлера и формула Эйлера-Маклорена. Он также способствовал использованию дифференциальных уравнений, в частности, вводя постоянную Эйлера-Маскерони:

Одним из самых необычных интересов Эйлера было применение математических идей в музыке. В 1739 году он написал Tentamen novae theoriae musicae, надеясь наконец включить музыкальную теорию к математике. Эта часть его работы, однако, не получила широкого внимания и была однажды названа "слишком математической для музыкантов и очень музыкальной для математиков".
Физика
Леонард Эйлер внес значительный вклад в развитие механики, в частности в решение задачи о вращении твердого тела. Подход Эйлера связан с понятиями Эйлеровы углов и кинематических уравнений Эйлера. В 1757 Эйлер опубликовал мемуар «Principes generaux du mouvement des fluides» (Общие принципы движения флюидов), в котором записал уравнения движения несжимаемой идеальной жидкости, получившие название уравнений Эйлера. Результатом работы над задачей о деформации бруса при погрузке стали уравнения Эйлера-Бернулли, которые впоследствии нашли применение в инженерной науке, в частности при проектировании мостов.
Эйлер работал над общими проблемами механики, развивая принцип Мопертюи. Уравнения лагранжевой механики часто называют уравнениями Эйлера-Лагранжа.
Эйлер применял разработаны математические методы для решения проблем небесной механики. Его труды в этой области получили несколько наград Парижской академии наук. Среди его достижений определения с большой точностью орбит комет и других небесных тел, объяснения природы комет, расчет параллакса Солнца. Расчеты Эйлера стали значительным вкладом в розвробку точных таблиц широт.
Важное значение для своего времени имел вклад Эйлера в оптику. Он отрицал господствующую тогда корпускулярную теорию света Ньютона. Труды Эйлера протяжении 1740-х годов помогли утвердиться волновой теории света Христиана Гюйгенса.
Астрономия
Большая часть астрономических сочинений Эйлера посвящена актуальным в то время вопросам небесной механики, а также сферической, практической и мореходной астрономии, теории приливов, теории астрономического климата, рефракции света в земной атмосфере, параллакса и аберрации, вращению Земли. В области небесной механики Эйлер внес существенный вклад в теорию возмущенного движения. Еще в 1746 он вычислил возбуждения Луны и опубликовал лунные таблицы. Одновременно с А. К. Клеро и Ж.Л.Д "Аламбером и независимо от них Эйлер разрабатывал общие теории движения Луны, в которых он исследовался с весьма высокой точностью. Первая теория, в которой применен метод разложения искомых координат в ряды по степеням малых параметров и дана частичная разработка аналитического метода вариации элементов орбиты, была опубликована в 1753. Эта теория была использована Т. И. Майером при составлении высокоточных таблиц движения Луны. Совершенная аналитическая теория, в которой дано численный развитие метода и вычислены таблицы, изложена в работе, изданной в Петербурге в 1772 на латинском языке. Ее сокращенный перевод на русский язык под названием «Новая теория движения Луны» был выполнен А. Н. Крыловым и издан в 1934. Вычислительные методы, предложенные Эйлером для получения точных эфемерид Луны и планет, в частности введенные им прямоугольные равномерно вращаются оси координат, были широко использованы впоследствии Дж.В.Гиллом. По выражению М. Ф. Субботина, они стали одним из важнейших источников дальнейшего прогресса всей небесной механики. Широкие возможности для применения этих методов возникли с появлением ЭВМ. Современная точная и полная теория движения Луны была создана в 1895-1908 Е. В. Брауном. Работы Эйлера и Гилла дали начало общей теории нелинейных колебаний, играющего большую роль в современных науке и технике.
Важное значение для астрономии имела работа Эйлера «Об улучшении объективного стекла зрительных труб» (1747), в которой он показал, что, комбинируя две линзы из стекла с различной преломляющей способностью, можно создать ахроматический объектив. Под влиянием работы Эйлера первый объектив такого рода был изготовлен английском оптиком Дж. Доллонд в 1758.