Портал о ремонте ванной комнаты. Полезные советы

Низкочастотный функциональный генератор. Генераторы на основе операционных усилителей Функциональный генератор частоты своими руками

В баллоне создается глубокий вакуум, необходи­мый для беспрепятственного пролета электронов. Электронный прожектор трубки состоит из катода, управляющего электрода и двух анодов и располага­ется в узкой удлиненной части баллона. Катод К изготовляется в виде небольшого никелевого ци­линдра, на торцевую часть которого наносится оксидный слой, испускающий при нагреве электроны. Катод заключен в управляющий электрод (модуля­тор) М также цилиндрической формы. В торце управляющего электрода имеется маленькое отверс­тие (диафрагма), через которое проходит электрон­ный луч. На управляющий электрод подается несколько десятков вольт отрицательного но отношению к катоду напряжения, с помощью которого регулируется яркость свечения пятна на экране трубки. Управляющий электрод действует подобно управляющей сетке электронной лампы. При некотором значении этого напряжения происходит запирание трубки, и светящееся пятно исчезает. Указанная регулировка выносится на переднюю па­нель осциллографа и снабжается надписью «Яр­кость».

Предварительная фокусировка электронного луча производится в пространстве между модулятором и первым анодом. Электрическое поле между этими электродами прижимает электроны к оси трубки и они сходятся в точку О на некотором расстоянии от управляющего электрода (рис. 33.2). Дальнейшая фо­кусировка луча выполняется системой двух анодов А 1 и А 2


Первый и второй аноды выполнены в виде открытых металлических цилиндров различных длин и диаметров, внутри которых на некотором расстоя­нии друг от друга расположены диафрагмы с небольшими отверстиями.

На аноды подается положительное ускоряющее напряжение (на первый

300-1000 В, на второй 1000-5000 В и более). Так как потенциал второго анода А 2 выше потенциала первого анода А 1 , то электрическое поле между ними будет направлено от второго анода к первому. Электроны, попавшие в такое электрическое поле, будут откло­няться им в направлении к оси трубки и получать ускорение в направлении движения к экрану. Таким образом, действие системы анодов эквивалентно действию оптической системы из собирательной и рассеиваю­щей линз. Поэтому фокусирующую систему анодов электронно-лучевой трубки иногда называют элект­ронно-статической линзой. Точная фокусировка луча производится изменением напряжения на первом аноде. Эта регулировка выносится на переднюю панель осциллографа и снабжается надписью «Фо­кус».

Сформированный электронный луч после второго анода попадает в пространство между двумя парами взаимно перпендикулярных отклоняющих пластин Х 1 Х 2 и У 1 У 2 , называемых электростатической откло­няющей системой. Первая пара плас­тин Х 1 Х 2 , расположенных вертикально, вызывает отклонение луча в горизонтальном направлении. Пластины второй пары У 1 У 2 , расположенные гори­зонтально, вызывают отклонение луча в вертикаль­ном направлении. Когда к паре пластин подводится постоянное напряжение , то электронный луч отклоня­ется в сторону пластины, находящейся под положи­тельным потенциалом, что приводит к соответствую­щему перемещению светящегося пятна на экране.

Когда на пластины подается переменное напряже­ние, перемещение светящегося пятна по экрану образует светящиеся линии.

Экран Э электронно-лучевой трубки представляет собой стеклянную поверхность, покрытую с внутрен­ней стороны тонким слоем специального вещества (люминофора), способного светиться при бомбарди­ровке его электронами.

Для получения изображения на экране труб­ки исследуемое напряжение сигнала подают на вертикально отклоня­ющие пластины У 1 У 2 , а па пластины Х 1 Х 2 - пи­лообразное напряжение называемое напряже­нием развертки (рис. 33.3).

На участке АВ напряжение развертки линейно зависит от времени, и под действием этого напряжения световое пятно переме­щается по экрану трубки вдоль горизонтальной оси пропорционально времени. На участке ВС напряже­ние развертки резко падает, а световое пятно возвращается в исходное положение.


Если одновременно с напряжением развертки к пластинам У 1 У 2 подвести исследуемое синусоидаль­ное напряжение, то на экране трубки получится один период синусоиды (рис. 33.4).

Положения 0, 1, 2, ...светового пятна на экране трубки в соответствующие моменты времени опреде­ляются мгновенными значениями исследуемого и развертывающего напряжений.

Если период развертки Тр выбран кратным пе­риоду исследуемого напряжения, то осциллограммы, получаемые в последующие периоды, накладываются друг на друга и на экране наблюдается устойчивое и четкое изображение исследуемого процесса


Генератор пилообразного напряжения для варикапов.

При работе с высокочастотным генератором, перестраеваемым варикапом, потребовалось изготовить для него управляющий генератор пилообразного напряжения. Схем генераторов "пилы" существует великое множество, но ни одна из найденных не подошла, т.к. для управления варикапом требовался размах выходного напряжения в пределах 0 - 40В при питании от 5В. В результате раздумий получилась вот такая схема.

Формирование пилообразного напряжения происходит на конденсаторе C1, зарядный ток которого определяестся резисторами R1-R2 и (в гораздо меньшей степени) параметрами транзисторов токового зеркала VT1-VT2. Довольно большое внутреннее сопротивление источника зарядного тока позволяет получить высокую линейность выходного напряжения (фото ниже; масштаб по вертикали 10В/дел). Основной технической проблемой в таких схемах является цепь разряда конденсатора C1. Обычно для этой цели используются однопереходные транзисторы, туннельные диоды и пр. В приведенной схеме разряд производится... микроконтроллером. Этим достигается простота налаживания устройства и изменения логики его работы, т.к. подбор элементов схемы заменяется адаптацией программы микроконтроллера.


Напряжение на C1 наблюдается компаратором, встроенным в микроконтроллер DD1. Инвертирующий вход компаратора подключен к C1, а неинвертирующий к источнику опорного напряжения на R6-VD1. По достижении напряжения на C1 значения опорного (примерно 3.8В) напряжение на выходе компаратора скачком изменяется от 5В до 0. Этот момент отслеживается программно и приводит к переконфигурированию порта GP1 микроконтроллера с входа на выход и подачи на него уровня логического 0. В результате конденсатор C1 оказывается замкнутым на землю через открытый транзистор порта и достаточно быстро разряжается. По окончании разряда C1 в начале следующего цикла вывод GP1 вновь конфигурируется на вход и производится формирование короткого прямоугольного синхро-импульса на выводе GP2 амплитудой 5В. Длительность разрядного и синхронизирующего импульсов устанавливается программно и может изменяться в широких пределах, т.к. микроконтроллер тактируется внутренним генератором на частоте 4 мГц. При варьировании сопротивления R1+R2 в пределах 1К - 1М частота выходных импульсов при указанной емкости C1 меняется примерно от 1 кГц до 1 Гц.
Пилообразное напряжение на C1 усиливается ОУ DA1 вплоть до уровня напряжения его питания. Желаемая амплитуда выходного напряжения устанавливается резистором R5. Выбор типа ОУ обусловлен возможностью его работы от источника 44В. Напряжение 40В для питания ОУ получается из 5В с помощью импульсного преобразователя на микросхеме DA2 включенной по стандартной схеме из ее даташита. Рабочая частота преобразователя 1.3 мГц.
Генератор собран на плате размером 32х36 мм. Все резисторы и большинство конденсаторов типоразмера 0603. Исключение составляют C4 (0805), C3 (1206), и C5 (танталовый, типоразмер А). Резисторы R2, R5 и разъем J1 установлены на обратной стороне платы. При сборке следует в первую очередь установить микроконтроллер DD1. Затем к проводникам платы временно подпаивают провода от разъема программатора и загружают прилагаемую программу. Отладка программы производилась в среде MPLAB, для загрузки использовался программатор ICD2.


Хотя описанное устройство и решило поставленную задачу и поныне успешно работает в составе свип-генератора, для расширения его возможностей приведенная схема может рассматриваться скорее как идея. Верхний предел частоты в данной схеме ограничен временем разряда C1, что в свою очередь определяется внутренним сопротивлением выходных транзисторов порта. Для ускорения процесса разряда желательно разряжать C1 через отдельный МОП транзистор с малым сопротивлением открытого канала. При этом можно значительно уменьшить время программной задержки для разряда, которая необходима для обеспечения полной разрядки конденсатора и, соответственно, падения выходного напряжения пилы практически до 0В (что было одним из требований к устройству). Для термостабилизации работы генератора желательно в качестве VT1-VT2 применить сборку из двух PNP транзисторов в одном корпусе. При низкой частоте генерируемых импульсов (менее 1 Гц) начинает сказываться конечное сопротивление генератора тока, что приводит к ухудшению линейности пилообразного напяжения. Ситуация может быть улучшена путем установки резисторов в эмиттеры VT1 и VT2.

Тема: Генераторы линейно изменяющегося напряжения и тока.

    Общие сведения о генераторах пилообразных импульсов (ГПИ).

    Генераторы линейно изменяющегося напряжения.

    Генераторы линейно изменяющегося тока.

Литература:

    Брамер Ю.А., Пащук И.Н. Импульсная техника. - М.: Высшая школа,1985. (220 -237).

    Быстров Ю.А., Мироненко И.Г. Электронные цепи и устройства. - М.: Высшая школа, 1989. - С. 249-261,267-271.

  1. Общие сведения о генераторах пилообразных импульсов (гпи).

Напряжением пилообразной формы называется такое напряжение, которое в течении некоторого времени изменяется по линейному закону (возрастает или убывает), а затем возвращается к исходному уровню.

Различают:

    линейно-возрастающее напряжение;

    линейно-падающее напряжение.

Генератор пилообразных импульсов - устройство, формирующее последовательность пилообразных импульсов.

    Назначение генераторов пилообразных импульсов.

Предназначены для получения напряжения и тока, изменяющегося во времени по линейному закону.

    Классификация генераторов пилообразных импульсов:

    По элементной базе:

    на транзисторах;

    на лампах;

    на интегральных микросхемах (в частности, на ОУ);

    По назначению:

    генераторы пилообразного напряжения (ГПН) (другое название - генераторы линейно изменяющегося напряжения - ГЛИН);

    генераторы пилообразного тока (ГПТ) (другое название - генераторы линейно изменяющегося тока - ГЛИТ);

    По способу включения коммутирующего элемента:

    последовательная схема;

    параллельная схема;

    По способу повышения линейности формируемого напряжения:

    с токостабилизирующим элементом;

    компенсационного типа.

    Устройство генераторов пилообразных импульсов:

В основе построения лежит электронный ключ, коммутирующий конденса­тор с заряда на разряд.

    Принцип действия генераторов пилообразных импульсов.

Т.о., принцип получения возрастающего или падающего напряжения объясняется процессом заряда и разряда конденсатора (интегрирующего цепь). Но, т.к. поступление импульсов на интегрирующую цепь необходимо коммутировать, ис­пользуется транзисторный ключ .

    Простейшие схемы генераторов пилообразных импульсов и их функционирование.

Схематично функционирование ГПИ выглядит следующим обра­зом:

Параллельная схема:

При размыкании электронного ключа конденсатор медленно, через сопротивление R заряжается до величины Е, формируя при этом пило­образный импульс. При замыкании электронного ключа конденсатор быстро разряжается через него.

Выходной импульс имеет следующую форму:

При смене полярности источника питания Е форма выходного сигнала будет симметрична относительно оси времени.

Последовательная схема:

При замыкании электронного ключа конденсатор быстро заряжается до величины источника питания Е, а при размыкании - разряжается через сопротивление R, формируя при этом линейно падающее напряжение пилообразной формы, которое имеет вид:

При смене полярности источника питания, форма выходного напряжения U вых (t) изменится на линейно возрастающее напряжение.

Таким образом, видно (можно отметить как один из главных недостатков), что чем боль­ше амплитуда напряжения на конденсаторе, тем больше нелинейность импульса. Т.е. необходимо формиро­вать выходной импульс на начальном участке экспоненциальной кривой заряда или разряда конденсатора.

ГЕНЕРАТОР ПИЛООБРАЗНОГО НАПРЯЖЕНИЯ - генератор линейно изменяющегося (тока), электронное устройство, формирующее периодич. напряжения (тока) пилообразной формы. Осн. назначение Г. п. н.- управление временной развёрткой луча в устройствах, использующих электроннолучевые трубки. Г. п. н. применяют также в устройствах сравнения напряжений, временной задержки и расширения импульсов. Для получения пилообразного напряжения используют процесс (разряда) конденсатора в цепи с большой постоянной времени. Простейший Г. п. н. (рис. 1, а) состоит из интегрирующей цепи RC и транзистора, выполняющего функции ключа, управляемого периодич. импульсами. В отсутствие импульсов транзистор насыщен (открыт) и имеет малое сопротивление участка коллектор - эмиттер, конденсатор С разряжен (рис. 1, б). При подаче коммутирующего импульса транзистор запирается и конденсатор заряжается от источника питания с напряжением - Е к - прямой (рабочий) ход. Выходное напряжение Г. п. н., снимаемое с конденсатора С , изменяется по закону. По окон чании коммутирующего импульса транзистор отпирается и конденсатор С быстро разряжается (обратный ход) через малое сопротивление эмиттер - коллектор. Осн. характеристики Г. п. н.: амплитуда пилообразного напряжения, коэф. нелинейности и коэф. использования напряжения источника питания. При в данной схеме


Длительность прямого хода T р и частота пилообразного напряжения определяются длительностью и частотой коммутирующих импульсов.

Недостатком простейшего Г. п. н. является малый k E при малом. Требуемые значения е лежат в пределах 0,0140,1, причём наименьшие значения относятся к устройствам сравнения и задержки. Нелинейность пилообразного напряжения во время прямого хода возникает из-за уменьшения зарядного тока вследствие уменьшения разности напряжений. Приблизительного постоянства зарядного тока добиваются включением в цепь заряда нелинейного токостабилизирующего двухполюсника (содержащего транзистор или электронную лампу). В таких Г. п. н. и . В Г. п. н. с положит. обратной связью по напряжению выходное пилообразное напряжение подаётся в зарядную цепь в качестве компенсирующей эдс. При этом зарядный ток почти постоянен, что обеспечивает значения 1 и =0,0140,02. Г. п. н. используют для развёртки в электронно-лучевых трубках с эл--магн. отклонением луча. Чтобы получить линейное отклонение, необходимо линейное изменение тока в отклоняющих катушках. Для упрощённой эквивалентной схемы катушки (рис. 2, а) условие линейности тока выполняется при подаче на зажимы катушки трапецеидального напряжения. Такое трапецеидальное напряжение (рис. 2, б )можно получить в Г. п. н. при включении в зарядную цепь дополнит. сопротивления R д (показано на рис. 1, а пунктиром). Отклоняющие катушки потребляют большие токи, поэтому генератор трапецеидального напряжения дополняют усилителем мощности.

Вашему вниманию подборка материалов:

Применение в релаксационных генераторах транзисторных аналогов динистора является типичным, так как для расчета и точной работы этого генератора необходимы строго определенные параметры динистора. Некоторые из этих параметров у промышленных динисторов либо имеют большой технологический разброс, либо вообще не нормируются. А сделать аналог со строго заданными параметрами не составляет труда.

Показан пилообразный сигнал показан выше. Время восстановления всегда меньше времени развертки. Пилообразный сигнал получается, когда время обратного хода становится равным нулю. Скорость развертки пилообразных волн зависит от используемого в контуре конденсатора. Скорость развертки контролируется резистором, помещенным в цепь.

Заряд и разряды конденсатора генерируют сигнал, показанный на рисунке ниже. Транзистор обеспечивает низкое сопротивление, через которое конденсатор становится разрядом. Мгновенное напряжение и напряжение питания измеряются в вольтах, время измеряется во втором, сопротивление измеряется в оме, а конденсатор измеряется в Фараде.

Схема генератора пилообразного напряжения

Релаксационный генератор выглядит так:

(A1) - релаксационный генератор на диодном тиристоре (динисторе), (A2) - в схеме A1 динистор заменен на транзисторный аналог. Рассчитать параметры транзисторного аналога в зависимости от используемых транзисторов и номиналов резисторов можно.

Термин «пилообразный» относится к форме сигнала и поэтому может иметь любое время подъема или спада, если форма волны сохраняет основную форму пильного диска. Пилотный генератор. представляет собой схему, которая генерирует сигнал пильного диска либо от внешнего входа, либо от автоколебаний, как в релаксационном генераторе. Схема, предназначенная для создания пилообразной функции, будет иметь очень медленный линейный скачок, который поднимается от стационарного уровня до пика. Когда достигнуто пиковое напряжение рампы, напряжение будет очень быстро возвращаться к начальному уровню.

Резистор R5 выбирается небольшим (20 - 30 Ом). Он предназначен для ограничения силы тока через динистор или транзисторы в момент их открытия. В расчетах влиянием этого резистора мы пренебрежем и будем считать, что на нем практически не падает напряжение, а конденсатор через него разряжается мгновенно.

Параметры динистора, применяемые в расчетах, описаны в статье вольт-амперная характеристика динистора.

Работа цепи однополярного транзистора

Время падения намного короче, чем время нарастания, но не мгновенное, хотя оно выглядит таким же образом по сравнению со временем нарастания. Время падения также упоминается как обратный ход, когда сигнал используется в качестве генератора развертки. Схема функционирует как осциллятор и отключает зарядку и разрядку конденсатора. Конечно, вы также можете сделать частотную переменную, добавив триммер, как текущую настройку. Верхняя сторона триммера остается подключенной к напряжению питания. В то время как другой конец триммера остается несвязанным, как в конфигурации.

[Минимальное напряжение на выходе, В ] =

[Максимальное напряжение на выходе, В ] =

Расчет сопротивления резистора R4

Для резистора R4 должны выполняться два соотношения:

[Сопротивление R4, кОм ] > 1.1 * ([Напряжение питания, В ] - [Напряжение запирания динистора, В ]) / [Ток удержания, мА ]

Это необходимо для того, чтобы динистор или его аналог надежно запирались, когда конденсатор разрядится.

Это время зарядки - это нарастающий наклон пилообразного вала, а также время развертки в конкретных приложениях. Время наклона зависит от значений резистора и конденсатора. Время падения - это время, необходимое для разрядки конденсатора через транзистор. Схема вакуумной трубки справа является еще одним примером схемы, которая выводит пилообразную форму сигнала. Эта схема использовалась как генератор развертки в осциллографе или другом дисплее. Рампа или часть развертки выхода используются для перемещения электронного луча слева направо по дисплею, в то время как часть обратного хода или обратного хода возвращает пучок в исходную точку.

[Сопротивление R4, кОм ] Напряжение питания, В] - [Напряжение отпирания динистора, В ]) / (1.1 * [Ток отпирания, мА ])

Это необходимо для того, чтобы конденсатор мог зарядиться до напряжения, необходимого для отпирания динистора или его аналога.

Коэффициент 1.1 выбран условно из желания получить 10% запас.

Если два этих условия вступают в противоречие друг с другом, то это означает, что выбрано слишком низкое напряжение питания схемы для данного тиристора.

Эта схема используется в качестве примера, чтобы показать вакуумную трубку, используемую в качестве пилообразного генератора, и второй способ изменения времени развертки. Переключатель используется для изменения времени времени развертки, так же как переменный резистор используется в цепи над ним.

Это показатель времени, основанный на величине изменения напряжения. Другим важным соображением является использование линейной части времени нарастания конденсаторов. Только в первый раз константа является линейной рампой или некоторой линейной. По мере того как конденсатор может заряжаться дополнительно, время зарядки замедляется все больше и больше. Разумеется, рампа пилы линейна по времени нарастания. То же самое относится к времени разряда конденсатора. Чем дольше время разряда, тем меньше будет линейный разряд.

Расчет частоты релаксационного генератора

Приблизительно оценить частоту генератора можно из следующих соображений. Период колебаний равен сумме времени заряда конденсатора до напряжения отпирания динистора и времени разряда. Мы договорились считать, конденсатор разряжается мгновенно. Таким образом, нам нужно оценить время заряда.

Не могли бы вы показать мне, как сделать пилообразный генератор с переменной частотой? Пилообразная волна характеризуется положительным линейным разворотом напряжения, заключенным с резким падением до нуля. Один из способов генерировать пилообразную поверхность - медленно заряжать конденсатор через источник постоянного тока , а затем быстро разряжать конденсатор, замыкая его.

Повторяя этот процесс, создается пилообразная волна. Но источники постоянного тока могут быть сложными, особенно если вы хотите настроить его. Вместо постоянного источника тока часто используется фиксированный резистор для ограничения тока зарядки крышки. Однако напряжение на зарядном конденсаторе с использованием фиксированного резистора не является линейным. Но, выбирая участок кривой, более или менее линейный, как показано красными пунктирными линиями, мы можем создать псевдопилос. Таймер 555 - это нестабильный генератор, который использует зарядку и разрядку конденсатора.

Второй вариант: R1 - 1 кОм, R2, R3 - 200 Ом, R4 - подстроечный 3 кОм (установлен на 2.5 кОм), Напряжение питания - 12 В. Транзисторы - КТ502 , КТ503 .

Требования к нагрузке генератора

Приведенные релаксационные генераторы могут работать с нагрузкой, имеющей высокое входное сопротивление, чтобы выходной ток не влиял на процесс зарядки и разрядки конденсатора.

Не идеальный, но достаточно хороший для большинства моделей электроники. Форма волны затем буферизируется и кондиционируется. Частотный банк изменяет частоту, а управление формой волны настраивает волну, чтобы верхняя и нижняя части формы волны не были обрезаны.

Более линейный пилообразный сигнал может быть сгенерирован с использованием цифрового счетчика с взвешенными выходами. Посмотрите на пилообразный генератор на рисунке 3. Это похоже на номер 3? Эти токи суммируются в узле неинвертирующего операционного усилителя и выхода в качестве напряжения.

[Сопротивление нагрузки, кОм ] >> [Сопротивление резистора R4, кОм ]

Делаем несложный функциональный генератор своими руками.

Каждый радиолюбитель, который изготавливает или повторяет радиоэлектронные устройства, рано или поздно сталкивается с необходимостью настройки и наладки собранных изделий.

В свою очередь, процесс настройки предполагает наличие соответствующих измерительных приборов. В наше время, безусловно, можно приобрести измерительные приборы промышленного изготовления, благо сейчас приборы стали широкодоступны.

Но, несложные приборы можно изготовить самостоятельно.

Вашему вниманию предлагается описание несложного функционального генератора, изготовленного мною много лет тому назад, который до сих пор находится в отличном работоспособном состоянии.

Функциональный генератор, это генератор колебаний, работающий в низкочастотном диапазоне (1Гц-100 кГц) и формирующий на выходе сигналы синусоидальной, прямоугольной и треугольной формы. Описание этого функционального генератора было опубликовано в журнале Радио №6 за 1992 год.

Данный генератор значительно упрощает ремонт узлов и устройств низкочастотной аппаратуры. Внешний вид изготовленного мною функционального генератора.

На переднюю панель выведены:

Переключатель диапазонов генератора;

Переключатель режима работы генератора;

Ручка установки частоты генерируемых колебаний;

Регулятор уровня выходного напряжения;

Выключатель питания;

Гнездо выхода;

Предлагаемый функциональный генератор имеет следующие технические характеристики:

— диапазон генерируемых частот 1 Гц-100 кГц, разделен на пять поддиапазонов:

1) 1 Гц-10 Гц;

2) 10 Гц-100 Гц;

3) 100 Гц-1 кГц;

4) 1 кГц-10 кГц;

5) 10 кГц-100 кГц;

— максимальный размах сигналов прямоугольный формы -10 В;

— максимальный размах сигналов треугольной формы -6 В;

— максимальный размах сигналов синусоидальной формы -3,3 В;

Краткое описание схемы функционального генератора.

Принципиальная схема функционального генератора представлена ниже:

Задающий генератор собран на элементах DD1.1, DD1.2, DD1.3. На выходе элемента DD1.1 формируются треугольные импульсы. Прямоугольные импульсы формируются узлом на элементах DD1.2, DD1.3.

Преобразователь сигналов треугольной формы в синусоидальную собран на элементах VD1-VD6 и R10-R12.

Данный генератор обеспечивает получение «белого шума», источником которого является стабилитрон VD9. Напряжение «белого шума» усиливается до уровня 5В усилителем на элементе DD1.4.

Частота генерируемых колебаний устанавливается переменным резистором R3.

Для контроля частоты генерируемых функциональным генератором колебаний мною был применен частотомер, описание которого опубликовано в брошюре «В помощь радиолюбителю» №99. Схема частотомера была немного доработана: добавлен еще один разряд индикации и заменены люминесцентные индикаторы типа ИВ-3 на светодиодные типа АЛС314А. Частотомер размещен в одном корпусе с функциональным генератором.

Принципиальная схема частотомера, с учетом вышеизложенных доработок приведена ниже:

Конечно же, в наши дни «городить» такой частотомер нет никакой необходимости. Все гораздо проще и компактнее получается на микроконтроллерах. Схема предоставлена в ознакомительных целях.

Настало время проверить работоспособность генератора.

Форму и размах колебаний проверяем при помощи осциллографа.

Синусоидальные колебания . Синусоида чистая, частота около 1000 Гц. Параметры каналов вертикального и горизонтального отклонения указаны на фото.

Треугольные колебания также имеют правильную форму:

Прямоугольные колебания выглядят не менее достойно. Меандр ровный и четкий, без выбросов, с крутыми фронтами.

Реальные технические характеристики функционального генератора практически соответствуют заявленным в авторской статье.

Небольшое видео, демонстрирующее работу цифровой шкалы функционального генератора:


Наглядно видно, как происходит подсчет количества импульсов.

Аналоговый генератор с пассивным интегратором (пилообразного напряжения) представляет собой низкочастотный генератор повторяющихся сигналов, линейно нарастающих во времени с периодическим сбросом до нуля или минимального уровня. Состоит из конденсатора с линейным зарядом от источника постоянного напряжения и усилителя выходного сигнала. Схема генератора пилообразного напряжения пассивным интегратором, ведомого синхроимпульсами, показана на рис. 2.51, а , диаграмма изменения сигналов показана на рис. 2.52, а.

Рис. 2.51. Схемы аналоговых ГПН: а - с пассивным интегратором; б - с активным интегратором



Рис. 2.52. Диаграммы преобразования сигналов аналоговыми ГПН: а - с пассивным интегратором; б - с активным интегратором

Заряд конденсатора С1 происходит от источника питания +15 В через резистор R3 по экспоненциальному закону:

Сброс пилообразного напряжения производится транзистором VT1, отпираемым синхроимпульсом м си. Постоянная времени цепи заряда конденсатора С1 выбирается так, чтобы использовать линейную часть функции изменения напряжения заряда (R3C1

Отрицательное смещение характеристики усилителя DA1 (цепь резистора R4) обеспечивает компенсацию падения напряжения Щ на эмиттер-коллекторном переходе транзистора VT1. Требуемая амплитуда пилообразного напряжения U njl устанавливается коэффициентом усиления выходного усилителя DA1. Подобные генераторы используются в блоках фазового управления БФУ-535 (БУВИП-133) и БРФ-176 (БУРТ-16) электровозов переменного тока ВЛ85, ВЛ80С.

Аналоговый генератор с активным интегратором предназначен для автоматического управления тиристорным импульсным преобразователем напряжения с широтно-импульсной модуляцией. Схема генератора, ведомого синхроимпульсами, показана на рис. 2.51, б, а диаграмма изменения его сигналов - на рис. 2.52, б. Входной усилитель DA1 является компаратором с инверсной характеристикой переключения и положительным смещением. При положительном уровне выходного напряжения компаратора DA1 усилитель DA2 интегрирует это напряжение, формируя сигнал пилообразного вида. При подаче синхроимпульса на инвертирующий вход усилителя DA1 его выходное напряжение переключается с положительного уровня на отрицательный, сбрасывая пилообразный сигнал до уровня, близкого к нулю.

Напряжение на выходе усилителя DA2 линейно нарастает при отрицательном уровне, так как усилитель DA2 инвертирует входной сигнал. Необходимая амплитуда пилообразного напряжения устанавливается величиной входного резистора R5:

При отрицательном импульсе входного напряжения усилителя DA2 происходит переключение сопротивления входного резистора диодом VD1 на малую величину R4«R5, при которой постоянная времени интегратора существенно уменьшается, обеспечивая быстрый сброс выходного напряжения. Диод VD2 в обратной связи усилителя DA2 ограничивает выходное напряжение на уровне порогового напряжения диода Щ.

При переключении входного сигнала DA2 на положительный уровень постоянная времени интегратора изменяется на большую величину, когда входное напряжение превышает пороговое напряжение обоих диодов. При этом выходное напряжение генератора скачком возрастает на величину 2 t/ Q .

Цифровой генератор пилообразного напряжения состоит из триггерного счетчика тактовых импульсов DD1, цифроаналогового преобразователя в виде резисторного цепного делителя напряжения и выходного аналогового усилителя DA1. Схема четырехразрядного цифрового генератора пилообразного напряжения показана на рис. 2.53.


Рис. 2.53.

Диаграмма изменения сигналов генератора пилообразного напряжения показана на рис. 2.54. На каждый такт генератора тактовых импульсов -П-С выходное напряжение усилителя DA1 дискретно увеличивается на Vj6 максимального выходного напряжения усилителя DA1. Необходимая амплитуда пилообразного напряжения U njl устанавливается посредством коэффициента усиления выходного усилителя DA1. Сброс пилообразного напряжения производится мгновенно на 16-й такт при обнулении триггерного счетчика DD1. После обнуления процесс дискретного нарастания вы-


ходного напряжения повторяется. Изменение частоты следования сигналов пилообразного напряжения можно выполнить только посредством изменения частоты тактовых сигналов С, подаваемых на вход генератора.

Кадровая развертка. Задающий генератор пилообразного напряжения (рис. 11.4) собран на транзисторахVT1 иVT2. При включения питающего напряжения конденсаторыС1 иС2 заряжа­ются. Через базовые цепи транзисторов протекают токи, которые выводят транзисторы в режим насыщения. Спустя некоторое время зарядный ток конденсаторов уменьшится и достигнет такого значе­ния, при котором один из транзисторов выйдет из насыщения. Изменение напряжения в цепи коллектора транзистораVT1 закроет транзисторVT2. В результате конденсатор С1, включенный в цепь ООС, будет медленно разряжаться через коллекторную цепь тран­зистораVT1. Так как отрицательно заряженная обкладка конден­сатораС1 подключена к базе транзистораVT1, при разряде конденсатора уменьшается ток базы и в результате автоматически уста­навливается такое соотношение между токами коллектора и базы, которое точно равно коэффициенту передачи тока транзистора. За все время разряда конденсатора ток базы и напряжение на базе меняются незначительно. Ток через резисторыR1 иR2 остается постоянным и не зависит от процессов, протекающих в устройстве. Таким образом, во время прямого хода в генераторе имеется глубо­кая ООС, поддерживающая постоянным ток разряда конденсатораС1, а следовательно, и высокую линейность пилообразного напря­жения. Поскольку коэффициент передачи тока транзистора меняет­ся в зависимости от приложенного напряжения (в первоначальный момент на 1 - 2%), то и нелинейность сигнала будет характеризо­ваться таким же значением. Процесс разряда конденсатора прекра­щается при таких напряжениях на коллекторе, которые требуют для управления током коллектора значительного увеличения тока базы. Коэффициент передачи тока транзистора резко падает. В этом слу­чае на базе транзистораVT2 значительно уменьшается закрываю­щий сигнал. ТранзисторVT2 открывается. В его коллекторе появ­ляется положительное напряжение, открывающее транзистор. Воз­никает лавинообразный процесс. Оба транзистора открыты. Цикл работы повторяется.

Рис. 11.4

Приведенные на схеме номиналы элементов формируют на вы­ходе сигнал с амплитудой больше 10 В и с частотой 50 Гц. Для регулирования амплитуды выходного сигнала и его линейности служат резисторы R7 иR8 соответственно. РезисторR1 меняет ча­стоту задающего генератора.

Генератор двухполярного пилообразного сигнала. Генератор пилообразного сигнала с регулируемым наклоном (рис. 11.5) состо­ит из двух интегрирующих цепочекR5, С1 иR2, С2 и порогового элемента, построенного на транзисторахVT1 иVT2. При включении питания на базе транзистораVT2 возникает сигнал 10 В. По мере заряда конденсатораС1 напряжение уменьшается. В это время на­пряжение на базе транзистораVT1 увеличивается. На разных кон­цах потенциометра существуют сигналы с различными фронтами. Когда напряжение на базах транзисторовVT1 иVT2 сравняется, они откроются и произойдет разряд конденсаторов. После этого начнется новый цикл работы генератора. Наклон выходного пило­образного сигнала можно регулировать с помощью потенциометра в широких пределах.

Рис. 11.5

Рис. 11.6

Управляемый генератор. Генератор пилообразного сигнала (рис. 11.6, а) построен по схеме интегратора с большой постоянной времени, которая определяется выражением т = h 21 Э C 1 R 4 гдеh 21э - коэффициент передачи тока транзистораVT1. ТранзисторVT1 медленно открывается: конденсаторС1 включен в цепь ООС. Напряжение в цепи коллектора уменьшается. В некоторый момент открывается диодVD2 и шунтирует вход транзистораVT2. Тран­зисторVT2 закрывается. Для ускорения процесса закрывания в его коллектор включена динамическая нагрузка - транзисторVT3. Через эмиттер транзистораVT3 конденсаторС1 быстро заряжается. В ре­зультате обратный ход пилообразного сигнала сведен к минимуму. Его длительность составляет менее 5 икс. Длительность пилообраз­ного сигнала можно регулировать с помощью базового тока тран­зистораVT1 (рис. 11.6,6).

Генератор пилообразного сигнала на интеграторе. В основу ге­нератора (рис. 11.7) положен интегратор на транзисторе. В качест­ве порогового и усилительного элементов используется интегральная микросхема К122УД1. Порог срабатывания микросхемы, равный 3 В, устанавливается делителемRl, R2. При включении питания в коллекторе транзистора напряжение не может измениться скач­ком. Отрицательная обратная связь через конденсатор формирует на выходе линейно нарастающий сигнал. Постоянная времени равна т=h 21Э R 3 С 2 , гдеh 21Э - коэффициент передачи тока транзистора. Когда напряжение на коллекторе достигнет 3 В, интегральная мик­росхема переключится. Положительное напряжение на выводе 5 пройдет через диод и откроет транзистор. Произойдет разряд кон­денсатораС2. На коллекторе вновь появится нулевой потенциал.

Рис. 11.7

Схема начнет новый цикл работы. Схема с указанными номиналами элементов формирует выходной сигнал с амплитудой 3 В, частотой следования 100 Гц и длительностью заднего фронта 0,1 мс.

Запускаемый генератор двухполярного сигнала. Для получения высоковольтного сигнала пилообразной формы в генераторе (рис. 11.8) применяют два каскада, на выходах которых формиру­ются падающий и нарастающий сигналы. Каждый каскад состоит из двух транзисторов. Транзисторы VT2 иVT4 являются сбрасыва­ющими,a VT1 иVT3 - активными элементами, в коллекторах ко­торых формируются выходные сигналы. После включения питания напряжение на коллекторе транзистораVT3 не может скачком из­мениться. Этому препятствует ООС через конденсаторС2. Напря­жение на коллекторе будет медленно нарастать. Скорость увеличе­ния напряжения определяется постоянной времени т=Л 2 1ЭCz(Ru-{- +Rт), гдеhzi Э - коэффициент передачи тока транзистора. Рези­сторR7 является ограничивающим. В другом каскаде в первый мо­мент появляется напряжение 100 В. Далее напряжение уменьшается и стремится к нулю. Сброс напряжения в коллекторе транзистораVT1 происходит в тот момент, когда приходит входной импульс. В это время открывается транзисторVT4. Импульсный сигнал с конденсатораС4 проходит на базу транзистораVT2 и открывает его. Происходит одновременный сброс конденсаторовС1 иС2.

Рис. 11.8

Генератор пилообразного сигнала с регулируемой линейностью. В основу генератора (рис. 11.9) положен принцип заряда конденсатораС2 стабилизированным током. Стабилизатор тока построен на транзистореVT2. Сигнал с конденсатораС2 поступает на вход эмиттерного повторителя. При формировании пилообразного сигнала напряжение на конденсаторе увеличивается. Одновременно с повы­шением напряжения на конденсаторе увеличивается ток базы тран­зистораVT3. В результате конденсатор заряжается не постоянным током, как того требует линейное нарастание напряжения, а током, уменьшающимся во времени. На заряд конденсатора влияет входное сопротивление эмиттерного повторителя. Для получения пилообраз­ного напряжения необходимо скомпенсировать ток базы транзисто­ра. Этого можно достигнуть цепью ОС, связывающей эмиттеры тран­зисторовVT2 иVT3. С увеличением выходного сигнала эмиттерного повторителя увеличивается эмнттерный ток транзистораVT2. Меняя сопротивление резистораR9 в цепи ОС, мы можем добиться возра­стающей или убывающей формы выходного сигнала.

Рис. 11.9

Для разряда конденсатора в схеме применяется блокинг-генера-тор. Во время заряда конденсатора диод закрыт питающим напря­жением. Когда транзистор VT1 открыт, конденсаторС2 разряжает­ся через диодVD1. Амплитуда выходного сигнала регулируется ре­зисторомR5, а частота - резисторомR1. Максимальная амплитуда равна 15 В.