Портал о ремонте ванной комнаты. Полезные советы

Как найти корни уравнения пример и правило. Уравнение и его корни: определения, примеры

\(2x+1=x+4\) находим ответ: \(x=3\). Если подставить тройку вместо икса, получатся одинаковые значения слева и справа:

\(2x+1=x+4\)
\(2\cdot3+1=3+4\)
\(7=7\)

И никакое другое число, кроме тройки такого равенства нам не даст. Значит, число \(3\) – единственный корень уравнения.

Еще раз: корень – это НЕ ИКС! Икс – это переменная , а корень – это число , которое превращает уравнение в верное равенство (в примере выше – тройка). И при решении уравнений мы это неизвестное число (или числа) ищем.

Пример : Является ли \(5\) корнем уравнения \(x^{2}-2x-15=0\)?
Решение : Подставим \(5\) вместо икса:

\(5^{2}-2\cdot5-15=0\)
\(25-10-15=0\)
\(0=0\)

По обе стороны от равно - одинаковые значения (ноль), значит 5 действительно корень.

Матхак : на контрольных таким способом можно проверить верно ли вы нашли корни.

Пример : Какое из чисел \(0, \pm1, \pm2\), является корнем для \(2x^{2}+15x+22=0\)?
Решение : Проверим подстановкой каждое из чисел:

проверяем \(0\): \(2\cdot0^{2}+15\cdot0+22=0\)

\(0+0+22=0\)

\(22=0\) - не сошлось, значит \(0\) не подходит
проверяем \(1\): \(2\cdot1^{2}+15\cdot1+22=0\)

\(2+15+22=0\)

\(39=0\) - опять не сошлось, то есть и \(1\) не корень

проверяем \(-1\): \(2\cdot(-1)^{2}+15\cdot(-1)+22=0\)

\(2-15+22=0\)

\(9=0\) - снова равенство неверное, \(-1\) тоже мимо


проверяем \(2\): \(2\cdot2^{2}+15\cdot2+22=0\)

\(2\cdot4+30+22=0\)

\(60=0\) - и вновь не то, \(2\) также не подходит


проверяем \(-2\): \(2\cdot(-2)^{2}+15\cdot(-2)+22=0\)
\(2\cdot4-30+22=0\)

\(0=0\) - сошлось, значит \(-2\) - корень уравнения

Очевидно, что решать уравнения перебором всех возможных значений – безумие, ведь чисел бесконечно много. Потому были разработаны специальные методы нахождения корней. Так, например, для достаточно одних только , для – уже используются формулы и т.д. Каждому типу уравнений – свой метод.

Ответы на часто задаваемые вопросы

Вопрос: Может ли корень уравнения быть равен нулю?
Ответ: Да, конечно. Например, уравнение \(3x=0\) имеет единственный корень - ноль. Можете проверить подстановкой.


Вопрос: Когда в уравнении нет корней?
Ответ: В уравнении может не быть корней, если нет таких значений для икса, которые сделают уравнение верным равенством. Яркий примером тут может быть уравнение \(0\cdot x=5\). Это уравнение не имеет корней, так как значение икса здесь не играет роли (из-за умножения на ноль) - все равно левая часть будет всегда равна нулю. А ноль не равен пятерке. Значит, корней нет.


Вопрос: Как составить уравнение так, чтоб корень этого уравенения был равен некоторому заданному числу (например, тройке)?
Ответ: появится позже.


Вопрос: Что значит «найдите меньший корень уравнения»?
Ответ: Это значит, что нужно решить уравнение, и в ответ указать его меньший корень. Например, уравнение \(x^2-5x-6=0\) имеет два корня: \(x_1=-1\) и \(x_2=6\). Меньший из корней: \(-1\). Вот его и надо будет записать в ответ. Если бы спрашивали про больший корень, то надо было бы записать \(6\).

Если есть две величины, а между ними стоит знак равенства, то это пример, который называют уравнением. Высчитав неизвестное, мы узнаем корень. Чтобы рассекретить это неизвестное, придется потрудиться над вычислением.

Понятнее будет, если возьмем в работу конкретное уравнение: x+10=16-2х. Оно относится к линейным, составляют его свободные члены и неизвестное х. Разносим эти составляющие в разные стороны от знака равенства. Теперь уравнение приобрело такой вид: 2х + х = 16 – 10 или 3х = 6; х = 2. Результат: Х = 2. Немного больший запас знаний нужно для вычисления корня в примере, где искомое в квадрате. Это уравнение квадратное и отличие его от линейного в том, что результатов может быть 1 или 2 или обнаружится, что корней 0. Чтобы понять лучше, решим уравнение: Х, возведенный в квадрат, умножить на 3 + 3Х = 90. Делаем так, чтобы справа образовался 0: Х2 х 3 + 3Х -90 = 0. Числа перед Х – коэффициенты 1, 3, 3. Требуется определение дискриминанта: возводим в квадрат 3 – второй коэффициент и отнимаем произведение 1 и 3. В итоге получим 6 – значит, доведя до конца расчет, обнаружим, что у этого уравнения корней 2. Если бы дискриминант выражался числом отрицательным, то изощряться в вычислении корней было бы нерационально – их просто нет. В случае если D=0, корень только 1. Теперь все-таки выполним расчет, чтобы определить эти 2 корня. Для подсчета 1 корня ко второму коэффициенту со знаком – прибавляем корень из D и делим это на удвоенный первый коэффициент: -3 + квадратный корень из 16, делим на 2. Выйдет 1/2. Вычисление второго аналогично, только корень из D вычитаем. Имеем в результате – 3 целых и 1/2.


Сложнее квадратного уравнение кубическое. Вид у него такой: х3-3х2-4х+20=0. Подбираем число, на которое можно поделить свободный член, чтобы слева появился 0. Делители для 20 – это ±1, ±2, ±4, ±5, ± 10, ± 20. Получается, что это делитель 5, он же и один из искомых корней. Остается решить квадратное уравнение и все корни известны.


Вот и все премудрости. Нет ничего сложного, но чтобы было совсем просто, можно воспользоваться онлайн-калькулятором.

Сегодня мы будем тренировать навык решения задания 5 ЕГЭ — найдите корень уравнения. Будем искать корень уравнения. Рассмотрим примеры решения такого рода заданий. Но для начала, давайте вспомним — что значит — найти корень уравнения?

Это значит найти такое, зашифрованное под х число, которое мы подставим вместо x и наше уравнение будет верным равенством.

Например, 3x=9 — это уравнение, а 3 . 3=9 — это уже верное равенство. То есть в данном случае, мы вместо x подставили число 3 — получили верное выражение или равенство, это означает, что мы решили уравнение, то есть нашли данное число x=3, которое превращает уравнение в верное равенство.

Вот этим мы и займемся — будем находить корень уравнения.

Задание 1 — найдите корень уравнения 2 1-4x =32

Это показательное уравнение. Оно решается следующим образом — нужно чтобы и слева, и справа от знака «равно» была степень с одинаковым основанием.

Слева у нас основание степени 2, а справа — степени нет вовсе. Но мы знаем, что 32 — это 2 в пятой степени. То есть, 32=2 5

Таким образом, наше уравнение будет выглядеть так: 2 1-4х =2 5

Слева и справа у нас основания степени одинаковы, значит, чтобы у нас было равенство, должны быть равны и показатели степени:

Получаем обыкновенное уравнение. Решаем обычным способом — все неизвестные оставляем слева, а известные переносим вправо, получим:

Делаем проверку: 2 1-4(-1) =32

Мы нашли корень уравнение. Ответ: х=-1.

Самостоятельно найдите корень уравнения в следующих заданиях:

б) 2 1-3х =128

Задание 2 — найдите корень уравнения

Уравнение решаем аналогично — путем приведения левой и правой частей уравнения к одному основанию степени. В нашем случае — к основанию степени 2.

Используем следующее свойство степени:

По этому свойству мы получим для правой части нашего уравнения:

Если равны основания степени, значит, равны и показатели степени:

Ответ: х=9.

Сделаем проверку — подставим найденное значение х в исходное уравнение — если мы получим верное равенство, значит, мы решили уравнение правильно.

Мы нашли корень уравнения правильно.

Задание 3 — найдите корень уравнения

Заметим, что справа у нас стоит 1/8, а 1/8 — это

Тогда наше уравнение запишется в виде:

Если основания степени равны, значит, равны и показатели степени, получим простое уравнение:

Ответ: х=5. Проверку сделайте самостоятельно.

Задание 4 — найдите корень уравнения log 3 (15-х)=log 3 2

Это уравнение решается также как и показательное. Нам нужно, чтобы основания логарифмов слева и справа от знака «равно» были одинаковыми. Сейчас они одинаковы, значит, приравниваем те выражения, которые стоят под знаком логарифмов:

Ответ: х=13

Задание 5 — найдите корень уравнения log 3 (3-x)=3

Число 3 — это log 3 27. Чтобы было понятно внизу нижним индексом под знаком логарифма стоит число которое возводится в степень, в нашем случае 3, под знаком логарифма стоит число, которое получилось при возведении в степень — это 27, а сам логарифм — это показатель степени, в которую нужно возвести 3, чтобы получить 27.

Смотрите на картинке:

Таким образом, любое число можно записать в виде логарифма. В данном случае очень удобно записать число 3 в виде логарифма с основанием 3. Получим:

log 3 (3-x)=log 3 27

Основания логарифмов равны, значит, равны и числа, стоящие под знаком логарифма:

Сделаем проверку:

log 3 (3-(-24))=log 3 27

log 3 (3+24)= log 3 27

log 3 27=log 3 27

Ответ: x=-24.

Найдите корень уравнения. Задание 6.

log 2 (x+3)=log 2 (3x-15)

Проверка: log 2 (9+3)=log 2 (27-15)

log 2 12=log 2 12

Ответ: x=9.

Найдите корень уравнения. Задание 7.

log 2 (14-2x)=2log 2 3

log 2 (14-2x)=log 2 3 2

Проверка: log 2 (14-5)=2log 2 3

log 2 9=2log 2 3

log 2 3 2 =2log 2 3

2log 2 3=2log 2 3

Ответ: x=2,5

Подготовьтесь к ЕГЭ и к ОГЭ -посмотрите предыдущие темы и .

В алгебре существует понятие двух видов равенств - тождества и уравнения. Тождества - это такие равенства, которые выполнимы при любых значениях букв, в них входящих. Уравнения - это тоже равенства, но выполнимы они лишь при некоторых значениях входящих в них букв.

Буквы по условию задачи обычно бывают неравноправными. Это значит, что одни из них могут принимать любые допустимые значения, называемые коэффициентами (или параметрами), другие же - их называют неизвестными - принимают значения, которые необходимо найти в процессе решения. Как правило, неизвестные величины обозначают в уравнениях буквами, последними в (x.y.z и т.д.), либо такими же буквами, но с индексом (х 1 ,х 2 , и т.д.), а известные коэффициенты - первыми буквами того же алфавита.

По количеству неизвестных выделяют уравнения с одним, двумя и несколькими неизвестными. Таким образом, все значения неизвестных, при которых решаемое уравнение превращается в тождество, называются решениями уравнений. Уравнение можно считать решенным в том случае, если найдены все его решения или доказано, что оно таковых не имеет. Задание «решить уравнение» на практике встречается часто и означает, что нужно отыскать корень уравнения.

Определение : корнями уравнения называются те значения неизвестных из области допустимых, при которых решаемое уравнение превращается в тождество.

Алгоритм решения абсолютно всех уравнений одинаков, и смысл его заключается в том, чтобы с помощью математических преобразований данное выражение привести к более простому виду.
Уравнения, которые имеют одинаковые корни, в алгебре называются равносильными.

Простейший пример: 7х-49=0, корень уравнения х=7;
х-7=0, аналогично, корень х=7, следовательно, уравнения равносильные. (В частных случаях равносильные уравнения могут совсем не иметь корней).

Если корень уравнения одновременно является корнем другого, более простого уравнения, полученного из исходного путем преобразований, то последнее называется следствием предыдущего уравнения.

Если их двух уравнений одно является следствием другого, то они считаются равносильными. Еще их называют эквивалентными. Приведенный выше пример это иллюстрирует.

Решение даже самых простых уравнений на практике нередко вызывает сложности. В результате решения можно получить один корень уравнения, два и более, даже бесконечное количество - зависит это от вида уравнений. Есть и такие, у которых нет корней, они называются неразрешимыми.

Примеры:
1) 15х -20=10; х=2. Это единственный корень уравнения.
2) 7х - y=0. Уравнение имеет бесконечное множество корней, так как у каждой переменной может быть бесчисленное количество значений.
3) х 2 = - 16. Число, возведенное во вторую степень, всегда дает положительный результат, поэтому невозможно отыскать корень уравнения. Это и есть одно из неразрешимых уравнений, о которых говорилось выше.

Правильность решения проверяется подстановкой найденных корней вместо букв и решением получившегося примера. Если тождество соблюдается, решение верное.

Уравнения в математике так же важны, как глаголы в русском языке. Без умения находить корень уравнения сложно утверждать, что ученик усвоил курс алгебры. К тому же для каждого их вида существуют свои особенные пути решения.

Что это такое?

Уравнение - это два произвольных выражения, содержащих переменные величины, между которыми поставлен знак равенства. Причем количество неизвестных величин может быть произвольным. Минимальное количество - одна.

Решить его - это значит узнать, есть ли корень уравнения. То есть число, которое превращает его в верное равенство. Если его нет, то ответом является утверждение, что «корней нет». Но может быть и противоположное, когда ответом является множество чисел.

Какие виды уравнений существуют?

Линейное. Оно содержит переменную, степень которой равна единице.

  • Квадратное. Переменная стоит со степенью 2, или преобразования приводят к появлению такой степени.
  • Уравнение высшей степени.
  • Дробно-рациональное. Когда переменная величина оказывается в знаменателе дроби.
  • С модулем.
  • Иррациональное. То есть такое, которое содержит алгебраический корень.

Как решается линейное уравнение?

Оно является основным. К такому виду стремятся привести все остальные. Так как у него найти корень уравнения достаточно просто.

  • Сначала нужно выполнить возможные преобразования, то есть раскрыть скобки и привести подобные слагаемые.
  • Перенести все одночлены с переменной величиной в левую часть равенства, оставив свободные члены в правой.
  • Привести подобные члены в каждой части решаемого уравнения.
  • В получившемся равенстве в левой его половине будет стоять произведение коэффициента и переменной, а в правой - число.
  • Осталось найти корень уравнения, разделив число справа, на коэффициент перед неизвестной.

Как найти корни квадратного уравнения?

Сначала его нужно привести к стандартному виду, то есть раскрыть все скобки, привести подобные слагаемые и перенести все одночлены в левую часть. В правой части равенства должен остаться только ноль.

  • Воспользуйтесь формулой для дискриминанта. Возведите в квадрат коэффициент перед неизвестной со степенью «1». Перемножьте свободный одночлен и число перед переменной в квадрате с числом 4. Из полученного квадрата вычтите произведение.
  • Оцените значение дискриминанта. Он отрицательный - решение закончено, так как у него корней нет. Равен нулю - ответом будет одно число. Положительный - два значения у переменной.

Как решить кубическое уравнение?

Сначала найдите корень уравнения x. Он определяется методом подбора из чисел, которые являются делителями свободного члена. Этот способ удобно рассмотреть на конкретном примере. Пусть уравнение имеет вид: х 3 - 3х 2 - 4х + 12 = 0.

Его свободный член равен 12. Тогда делителями, которые требуется проверить, будут положительные и отрицательные числа: 1, 2, 3, 4, 6 и 12. Перебор можно закончить уже на числе 2. Оно дает верное равенство в уравнении. То есть его левая часть оказывается равной нулю. Значит число 2 - это первый корень кубического уравнения.

Теперь необходимо разделить исходное уравнение на разность переменной и первого корня. В конкретном примере это (х - 2). Несложное преобразование приводит числитель к такому разложению на множители: (х - 2)(х + 2)(х - 3). Одинаковые множители числителя и знаменателя сокращаются, а оставшиеся две скобки при раскрытии дают простое квадратное уравнение: х 2 - х - 6 = 0.

Здесь найдите два корня уравнения по принципу, описанному в предыдущем разделе. Ими оказываются числа: 3 и -2.

Итого, у конкретного кубического уравнения получилось три корня: 2, -2 и 3.

Как решаются системы линейных уравнений?

Здесь предложен метод исключения неизвестных. Он заключается в том, чтобы выразить одну неизвестную через другую в одном уравнении и подставить это выражение в другое. Причем решением системы из двух уравнений с двумя неизвестными всегда является пара переменных величин.

Если в них переменные обозначены буквами х 1 и х 2 , то можно из первого равенства вывести, к примеру, х 2 . Потом оно подставляется во второе. Проводится необходимое преобразование: раскрытие скобок и приведение подобных членов. Получается простое линейное уравнение, корень которого вычислить легко.

Теперь возвратитесь к первому уравнению и найдите корень уравнения x 2 , используя получившееся равенство. Эти два числа являются ответом.

Для того чтобы быть уверенным в полученном ответе, рекомендуется всегда делать проверку. Ее не обязательно записывать.

Если решается одно уравнение, то каждый из его корней нужно подставить в исходное равенство и получить одинаковые числа в обеих его частях. Все сошлось - решение верное.

При работе с системой корни необходимо подставлять в каждое решение и выполнять все возможные действия. Получается верное равенство? Значит решение правильное.