Портал о ремонте ванной комнаты. Полезные советы

Допуски и посадки подшипников качения. Пример выбора и расчёта посадок подшипника качения Поле допуска подшипника таблица

Подшипники качения обладают полной взаимозаменяемостью. Присоединительными размерами подшипника качения являются наружный диаметр D , внутренний диаметр d и ширина кольца B . Допуски на изготовление посадочных поверхностей подшипника не совпадают с допусками по квалитетам, установленными для гладких и цилиндрических поверхностей. Для подшипников качения стандартом (ГОСТ 520-71) предусмотрены 5 классов точности (Р0, Р6, Р5, Р4, Р2). Класс точности указывается перед номером подшипника, при этом буква «Р» может опускаться (Р4-205 или 4-205), а нулевой класс (подшипники общего назначения) может не ставиться.

На рис. П1.5 представлены схемы расположения полей допусков посадочных диаметров колец подшипника и поля допусков сопрягаемых с ними поверхностей для подшипника класса точности Р0 в соответствие с данными табл. П1.8.

Таблица П1.8 Поля допусков посадочных поверхностей, сопрягаемых с подшипниками качения по ГОСТ 3325
Класс точности подшипника Поля допусков посадочных поверхностей
отверстий корпусов для посадок валов для посадок
с зазором переход-ных с натягом с зазором переход-ных с натягом
0 и 6 (E9), E8, G7, (H9), H8, H7 J s 7, (J7), K7, M7, N7 P7 (e9), e8, f8, f9, f7, f6 h11, (h10), h9, h8, h7, h6, j s 6, (j6), g6 r7, r6, p6, n6, m6, k6
5 и 4 G6, H6 J s 6, (J6), K6, M6 P6, N6 g5 j s 5, (j5), h5 p5, n5, m5, k5

Стандартом установлены следующие обозначения полей допусков по классам точности подшипников: для внутренних колец (отверстия) L0 , L6 , L5 , L4 , L2 ; для наружных колец (валы) l0 , l6 , l5 , l4 , l2 (рис. П1.5).При этом допуски на отверстия внутренних колец перевернуты относительно нулевой линии , то есть поле допуска расположено не в тело кольца, как это принято для рядовых деталей, а из тела. В следствие перевернутости поля допуска L все посадки внутреннего кольца сдвигаются в сторону больших натягов - переходные посадки n , m и k становятся посадками с натягом, причем величина натяга в таких посадках несколько меньше по сравнению с нормальными посадками с натягом (от p до zc ), а посадки с зазором h переходят в группу переходных посадок (рис. П1.5).

Режим работы подшипника определяется по отношению динамической эквивалентной нагрузки P к динамической грузоподъемности C : нормальный режим -0,07< P/C £ 0,15 ; легкий режим - P/C £ 0,07 ; тяжелый режим - P/C > 0,15 .


Таблица П1.9

Режим работы Рекомендуемые посадки Примеры применения
Внутреннее кольцо на оси
Легкий L0/g6; L6/g6 Ролики конвейеров
Нормальный или тяжелый L0/f7; L0/g6; L0/h6; L6/f7; L6/g6; L6/h6 Колеса автомобилей, тракторов и самолетов
L0/h6; L6/h6 Ролики конвейеров, блоки грузоподъемных машин
Наружное кольцо в корпусе
Легкий J s 7/l0; H7/l0; J s 7/l6; H7/l6 J s 6/l5; H6/l5; J s 6/l4; H6/l4; J s 5/l2;H5/l2 Быстроходные электродвигатели, бытовая техника
Нормальный M7/l0; K7/l0; J s 7/l0; M7/l6; K7/l6; J s 7/l6 Коробки передач, задние мосты автомобилей, узлы на конических роликовых подшипниках
J s 7/l0; J s 7/l6; J s 6/l5; J s 6/l4 Электродвигатели, шпиндели станков, узлы с радиально-упорными подшипниками
K6/l5; J s 6/l5; K6/l4; J s 6/l4; K5/l2; J s 5/l2; Коленвалы двигателей, шпиндели шлифовальных станков
H8/l0; H8/l6
Тяжелый H7/l0; J7/l0; H7/l6; J7/l6 Узлы общего машиностроения , редукторы, тяговые электродвигатели , сельхозмашины
H9/l0; H8/l0; H9/l6; H8/l6; H6/l5; H6/l4 Узлы с упорными подшипниками без радиальной нагрузки на шариках
G7/l0; G7/l6; G6/l5; G6/l4 на роликах

На сборочных чертежах подшипниковых узлов посадку подшипника обозначают в виде дроби после номинального размера посадочного диаметра. Например, посадка с зазором наружного кольца подшипника диаметром 160 мм в корпус: Æ 160 H7/l0 (допускается Æ 160 H7-l0 ); переходная посадка внутреннего кольца подшипника диаметром 90 мм на вал: Æ 90 L0/j s 6 (допускается Æ 90 L0-j s 6 ).

Диаметры отверстий подшипников, мм Рекомендуемые посадки Примеры применения
шариковых роликовых
Легкий или нормальный режим работы
до 50 L5/j s 5; L5/h5; L4/j s 5; L4/h5; L2/j s 4; L2/h4; L2/j s 3; L2/h3; Гидромоторы , малогабаритные электромашины, электрошпиндели, турбохолодильники
до 40 L0/k6; L0/j s 6; L6/k6; L6/j s 6; L5/j s 5; L4/j s 5; L2/j s 4; Сельхозмашины, турбокомпрессоры, газотурбинные двигатели, электромоторы, редукторы, коробки передач колесных и гусеничных машин, центрифуги, вентиляторы
до 100 L0/k6; L0/j s 6; L6/k6; L6/j s 6; L5/k5; L4/k5; L2/k4;
до 250 L0/m6; L6/m6
Нормальный или тяжелый режим работы
до 100 до 40 L0/k6; L0/j s 6; L6/k6; L6/j s 6; L5/k5; L4/k5; L2/k4 Электродвигатели (до 100 кВт), турбины, кривошипно-ползунные механизмы, шпиндели станков, крупные редукторы
свыше 100 до 100 L0/m6; L6/m6; L5/m5; L4/m5; L2/m4
-- до 250 L0/p6; L0/n6; L6/p6; L6/n6; L5/n5; L4/n5; L2/n4
-- Св. 50 до 140 L0/n6; L0/m6; L6/n6; L6/m6 Буксы тепловозов, трамваев и электровозов, коленвалы двигателей, крупные электродвигатели, экскаваторы, дорожные машины
-- Св. 140 до 200 L0/p6; L6/p6
-- Св. 200 до 250 L0/r7; L0/r6; L6/r7; L6/r6

Таблица П1.11

Посадочные поверхности под установку подшипников должны иметь качественную обработку поверхности во избежание смятия и среза местных выступов (шероховатостей) при запрессовке и эксплуатации подшипников. При установке подшипников весьма желательно применение тепловой сборки (нагрев подшипника в масляной ванне с одновременным охлаждением вала твердой углекислотой или жидким азотом). Применяемая обычно в ремонтном производстве силовая сборка резко снижает срок жизни подшипника из-за взаимного перекоса колец после сборки. Перед установкой подшипников посадочные поверхности необходимо смазать жидкой или консистентной смазкой.

Для образования посадок с подшипниками качения из общей системы допусков и посадок (ГОСТ 25347-89) отобрана группа полей допусков, т.е. основных отклонений и квалитетов. Полный набор этих отобранных полей допусков приведен в ГОСТ 3325-85, в котором также рассматриваются вопросы использования этих полей допусков. В этом стандарте выделены посадки, которые используются для основных типов соединений, и посадки ограниченного применения. Естественно, что речь идет о полях допусков и отверстий на элементы деталей обрабатываемых потребителем подшипников. Полный набор полей допусков, используемых при образовании посадок с подшипниками качения, приведен на рис. 41.

Для облегчения студентам выполнения работ при курсовом и дипломном проектировании, а также для работы начинающим специалистам, приведены табл. 6 и 7. содержащие основные поля допусков для валов и отверстий, на которые устанавливаются подшипники качения.

Рис. 41. Поля допусков валов и отверстий посадочных поверхностей для установки подшипников качения

Таблица 6

Поля допусков валов для основных видов сопряжений по кольцу подшипника

Таблица 7

Поля допусков отверстий для основных видов сопряжений

посадочных поверхностей по наружному кольцу подшипника

Как можно видеть из приведенных таблиц, точность присоединительных поверхностей отверстий обычно на один квалитет больше, чем для валов при образовании посадок, т.е. точность отверстия на 60% меньше, чем у вала. Объясняется это тем, что изготавливать и измерять отверстие труднее и дороже, чем вал того же номинального значения, а характер посадки определяется не значениями размера одного из сопрягаемых размеров, а разностью их размеров.

4.2.7. Посадки подшипников качения на валы

и в отверстия корпусов

Как и при образовании посадок в соответствии с единой системой допусков и посадок, посадка подшипников осуществляется в системе отверстия и в системе вала.

Посадки по наружному диаметру подшипника осуществля-ются в системе вала, поскольку с приобретением подшипника одновременно приобретается готовый вал и нет смысла его дополнительно обрабатывать для получения посадок в системе отверстия.

Посадки по внутреннему диаметру подшипника осуществляются в системе отверстия. Поля допусков отверстия подшипника расположены не в плюс, как у обычных основных отверстий, а в минус - для получения большего количества переходных посадок. В этом особенность посадок в системе отверстия по внутреннему кольцу подшипника.

Обозначение посадок подшипников, в принципе, такое же, как в общей системе допусков и посадок, т.е. в виде дроби, когда в числителе указывается поле допуска отверстия, а в знаменателе - поле допуска вала (рис. 42, а). Естественно, что одним из полей допуска является поле допуска кольца подшипника.

Рис. 42. Обозначение на сборочном чертеже посадок подшипников качения

Обозначение может осуществляться несколькими вариантами: обозначение посадки в системе отверстия (по внутреннему кольцу):

Ǿ50 L0/js6; или Ǿ50 L0 - js6; или Ǿ50 ;

обозначение посадки в системе вала подшипника (по наружному кольцу):

Ǿ90 Н7/l 0; или Ǿ90Н7 - l 0; или Ǿ90

Стандартом допускается, а на производстве этим повсеместно пользуются, не указывать поле допуска кольца подшипника (рис. 42, б). Таким образом, но сборочном чертеже допускается вместо посадки указывать только поле допуска размера, который будет обрабатываться по данному чертежу на данном производстве, и не указывать точность (поле допуска) поверхности подшипника. Такая система обозначения многих вполне устраивает (чем меньше надо указывать, тем меньше надо знать), но существенный недостаток этого обозначения в том, что на чертеже не указывается в явном виде точность используемого подшипника.

Подшипник качения представляет собой сложный узел. В общем случае он состоит из наружного и внутреннего колец, тел качения и сепаратора. Телами качения являются шарики, ролики или иглы в игольчатых подшипниках. Подшипники качения обладают полной внешней взаимозаменяемостью по присоединительным поверхностям, что обеспечивает возможность их замены при износе. Кольца подшипников и тела качения обладают неполной взаимозаменяемостью, гак как их собирают методом селективной подборки.

Основными присоединительными поверхностями подшипников качения являются:

  • 1) отверстие во внутреннем кольце радиальных и радиально-упорных подшипников или тутом кольце упорных подшипников;
  • 2) наружная поверхность наружного кольца в радиальных и радиально-упорных подшипниках или свободном кольце упорных подшипников.

В связи с этим различают посадки внутреннего кольца на вал и наружного кольца в корпус. Требуемый характер соединения обеспечивается выбором соответствующего поля допуска вала или отверстия корпуса при неизменных полях допусков колец подшипника.

Стандартизация посадок подшипников сводится к установлению предельных отклонений посадочных поверхностей колец подшипников, рядов полей допусков для валов и отверстий корпусов, соединяемых с подшипниками.

Точность подшипников качения определяется отклонениями, установленными на геометрические и кинематические параметры, к которым относятся: ширина внутреннего и наружного колец (В); ширина наружного кольца, если внутреннее имеет иную ширину (С); номинальные диаметры отверстия внутреннего кольца и посадочной поверхности наружного кольца (а1. О); средние диаметры отверстия внутреннего и наружного колец (

где и с!^ Отт - наибольшие и наименьшие диаметры посадочных поверхностей колец подшипника; радиальное биение дорожки качения внутреннего кольца относительно его отверстия радиальное биение дорожки качения наружного кольца относительно его наружной цилиндрической поверхности (Д"); монтажная высота однорядного конического роликового подшипника (Г); непостоянство ширины кольца (1/р).

Классы точности

В зависимости от точности перечисленных выше параметров установлены следующие пять классов точности, обозначаемых (в порядке возрастания точности) 0; 6; 5; 4; 2. Каждому классу точности соответствует свой допуск. Классы точности подшипника выбираются исходя из требований, предъявляемых к точности вращения и условиям работы соединения.

В механизмах, когда требования к точности вращения специально не оговорены, применяют подшипники классов точности 0 и 6. Подшипники классов 5 и 4 применяют при большой частоте вращения и повышенных требованиях к точности вращения (например, шпиндели точных станков). Подшипники класса точности 2 используют в специальных случаях (точные приборы, высокоскоростные подшипниковые узлы).

Подшипники имеют условные обозначения, состоящие из цифр и букв.

Две первые цифры, считая справа, обозначают для подшипников с внутренним диаметром от 20 до 495 мм внутренний диаметр подшипников, деленный на 5. Третья цифра справа совместно с седьмой обозначают серию подшипников всех диаметров, кроме малых (до 9 мм). Основная из особо легких серий обозначается цифрой I; легкая - 2; средняя - 3; тяжелая - 4; легкая широкая - 5; средняя широкая - 6 и т. д.

Четвертая справа цифра обозначает тип подшипника: 0 - радиальный шариковый однорядный; I - радиальный шариковый двухрядный сферический; 2 - радиальный с короткими цилиндрическими роликами; 3 - радиальный роликовый двухрядный сферический; 4- роликовый с длинными цилиндрическими роликами или иглами; 5 - роликовый с витыми роликами; 6 - радиально-упорный шариковый; 7 - роликовый конический; 8 - упорный шариковый; 9 - упорный роликовый.

Пятая или пятая и шестая справа цифры вводятся не для всех подшипников и обозначают их конструктивные особенности. Например, наличие встроенных уплотнений, наличие стопорной канавки, утла контакта шариков в радиально-упорных подшипниках и т. п.

Цифры 6; 5; 4 и 2, стоящие через тире (разделительный знак) перед условным обозначением подшипника, обозначают его класс точности. Класс 0 не указывается.

Например: 5-210. Цифры (две первые справа) 10 обозначают внутренний диаметр подшипника, который равен 10-5 = 50 мм, цифра 2 (третья справа) обозначает серию. В данном случае - легкая серия. Подшипник радиальный шариковый однорядный, так как отсутствуют четвертая, пятая и шестая цифры (см. сноску). Класс точности подшипника - 5.

Для сокращения номенклатуры подшипники изготавливают с отклонениями размеров внутреннего и наружного диаметров, не зависящими от посадки, по которой их будут монтировать. Наружное кольцо диаметром О принято за основной вал, а внутреннее кольцо диаметром й - за основное отверстие. Таким образом, посадки наружного кольца с корпусом осуществляются по системе вала, а посадки внутреннего кольца с валом - по системе отверстия. При этом поле допуска внутреннего кольца расположено в "минус" от номинального размера (вниз от нулевой линии), а не в "па/ос", как у обычного основного отверстия (рис. 5.24).

В этой связи при выборе посадок на вал необходимо иметь в виду, что характер соединения внутреннее кольцо-вал получается с небольшим гарантированным натягом. Характер соединений наружное кольцо-корпус такой же, как в обычных соединениях по системе вала при одинаковой точности изготовления.

ГОСТ 3325-85 устанавливает следующие обозначения полей допусков на посадочные размеры колец подшипников по классам точности (рис. 5.25):

  • - для среднего внутреннего диаметра подшипников Ьй^ ¿0, ¿6, ¿5, ¿4, 12;
  • - для среднего наружного диаметра подшипников /Д," /0, /6, /5, /4, /2, где Ьйтъ Ют - общее обозначение поля допуска соответственно на средний внутренний йт и средний наружный От диа-

Рис. 5.24.

Рис. 5.25.

метры подшипника; Ьу I- обозначение основного отклонения соответственно среднего внутреннего и среднего наружного диаметров подшипника.

Поля допусков Ьйт и Ют посадочных размеров подшипника расположены одинаково в "минус" от линии их номинальных средних размеров От и

Значения допусков на посадочные размеры подшипника класса точности 0 соответствуют примерно 5-6-му квалитетам, а для подшипников класса точности 2 - 2-3-му квалитетам.

Для обеспечения высокого качества подшипников овальность и средняя конусообразность отверстия и наружной цилиндрической поверхности колец шариковых и роликовых радиально-упорных подшипников классов точности 5, 4, 2 не должны превышать 0,5 допуска на диаметры (1т, От. Допускаемая овальность посадочных поверхностей колец подшипника в свободном состоянии может быть больше 0,5 допуска на диаметр, но при сборке подшипника и его монтаже кольца выправляются (овальность устраняется). Вследствие овальности, конусообразное™ и других отклонений при измерении подшипников могут быть получены различные значения диаметров их колец в разных сечениях. В связи с этим установлены предельные отклонения номинального (а". О) и среднего (4, А,) диаметров колец.

К шероховатости посадочных и торцевых поверхностей колец подшипников, а также валов и корпусов предъявляют повышенные требования. Особо большое значение имеет шероховатость поверхности дорожек и тел качения. Например, уменьшение шероховатости от Яа = 0,63-0,32 мкм до Яа = 0,16-0,08 мкм повышает ресурс подшипников более чем в 2 раза, а дальнейшее уменьшение шероховатости до Яа = 0,08-0,04 мкм - еще на 40% . Допуск круглости для подшипников класс точности 0 и 6 допускается в пределах половины допуска на диаметр в любом сечении посадочной поверхности, а для класса 5 и 4 - четверть допуска. Допуск цилиндричности допускается в пределах половины допуска на диаметр посадочной поверхности на длине этой поверхности для 0 и 6 класса и четверти допуска на диаметр в любом сечении посадочной поверхности для 4 и 2 классов точности.

Пример назначения и написания посадок колец подшипника 6-308 при условии, что вращается и испытывает циркуляционное нагружение наружное кольцо, приведен на рис. 5.26, а; схемы расположения полей допусков сопрягаемых деталей и средневероятные параметры в посадках - на рис 5.26, и .

Рис. 5.26.

а - вращается и испытывает циркуляционное нагружение наружное кольцо; б схемы расположения полей допусков и средневероятные параметры в посадках

Для сокращения номенклатуры подшипники изготавливают с отклонениями размеров наружного и внутреннего диаметров не зависимо от посадки, по которой их будут монтировать. Для всех классов точности подшипников верхнее отклонение присоединительных диаметров принято равным нулю. Таким образом, диаметры наружного и внутреннего колец приняты соответственно за диаметры основного вала и основного отверстия, а следовательно, посадку соединения наружного кольца подшипника с корпусом назначают в системе вала, а посадку соединения внутреннего кольца подшипника с валом – в системе отверстия. Однако поле допуска на диаметр отверстия внутреннего кольца расположено в «минус» от номинального размера, а не в «плюс», как у обычного основного отверстия, т.е. не в «тело» кольца, а вниз от нулевой линии (рис. 49).

Такое расположение поля допуска установлено с целью обеспечения сравнительно небольшого натяга в соединении внутреннего кольца подшипника с валом при использовании имеющихся в ЕСКД полей допусков на валы под переходные посадки, с учетом, что в большинстве подшипниковых соединений вращается вал, а корпус с наружным кольцом неподвижны.

Посадка подшипника в корпус в этих же условиях, как будет показано в дальнейшем, должна быть с небольшим зазором, поэтому поле допуска на диаметр наружного кольца располагается в «тело» детали или в «минус», как принято в общем машиностроении для основного вала.

Вследствие овальности конусообразности и других отклонений формы при измерении могут быть получены различные значения диаметра колец подшипников в разных сечениях. В связи с этим стандартом установлены предельные отклонения номинальных , и средних , диаметров колец. Средние диаметры и определяют расчетом как среднее арифметическое наибольшего и наименьшего диаметров, измеренных в двух крайних сечениях кольца.

К шероховатости посадочных и торцовых поверхностей колец подшипников, а также валов и корпусов предъявляют повышенные требования. Например, у колец подшипников класса точности 4 и 2 диаметром до 250 мм параметр шероховатости должен быть в пределах 0,63…0,32 мкм. Особое значение имеет шероховатость поверхности дорожек и тел качения. Уменьшение параметра шероховатости поверхности от 32…0,16 мкм до 0,16…0,08 мкм повышает ресурс подшипника более чем в два раза, а дальнейшее уменьшение параметра шероховатости до 0,08…0,04 мкм – еще на 40 %.

Выбор посадок колец подшипников на вал и в корпус осуществляется согласно ГОСТ 3325-85, исходя из условий работы сборочной единицы, в которую входят подшипники. При этом учитываются: схема работы сборочной единицы (вращается вал с внутренним кольцом или корпус с наружным кольцом); вид нагружения колец и режим работы подшипника.

Практически чаще всего сборочные единицы, содержащие подшипники, работают по схеме, когда вращается внутренне кольцо с валом, а наружное кольцо и корпус неподвижны (рис. 50). В этом случае необходимо обеспечить неподвижность соединения внутреннего кольца подшипника с валом. Это достигается за счет использования полей допусков валов под переходные посадки (основные отклонения , , , ), что, благодаря специфическому расположению поля допуска внутреннего кольца (вниз от нулевой линии), позволяет получить в соединении небольшой, чаще всего гарантированный натяг. Исключение представляет случай, когда предельные отклонения вала расположены симметрично относительно нулевой линии. Однако в этом случае вероятность получения натяга в соединении достаточно велика (96…98 %).

Рис. 50. Схемы полей допусков посадок колец подшипников на вал и в корпус

при вращении вала с внутренним кольцом подшипника

Применять для рассматриваемого соединения валы с полями допусков под неподвижные посадки недопустимо, так как получаемые при этом натяги сильно осложняют условия монтажа и демонтажа подшипников, а в процессе их эксплуатации возможны поломки в связи со значительными внутренними напряжениями в кольцах и шариках и заклинивание тел качения.

Поля допусков валов, как видно из рис. 50, выбирают по системе основного отверстия:

Для подшипников класса точности 0 и 6 − , , , ;

Для подшипников класса точности 5 и 4 − , , , ;

Для подшипников класса точности 2 − , , , .

Наружное кольцо подшипника в корпус при рассматриваемой схеме работы сборочной единицы должно устанавливаться свободно. Поля допусков отверстий корпусов выбирают по системе основного вала:

Для подшипников класса точности 0 и 6 − , , , , , , ;

Для подшипников класса точности 5 и 4 − , , ;

Для подшипников класса точности 2 − , , .

В результате обеспечивается легкость монтажа, устраняется возможность заклинивания тел качения и создаются условия для периодического проворачивания наружного кольца в корпусе, что способствует более равномерному износу его беговой дорожки.

Если вращается наружное кольцо с корпусом, а внутреннее кольцо и вал неподвижны, то в этом случае необходимо обеспечить неподвижность соединения наружного кольца с корпусом. Соединение внутреннего кольца с валом в рассматриваемом случае должно быть свободным. Поля допусков для отверстий корпусов и поля допусков на валы приведены в справочной литературе по нормированию точности подшипников.

Выбор посадок колец подшипников определяется также видом нагружения и режимом работы.

В случае если сборочная единица работает по схеме, вращается вал с внутренним кольцом, а корпус с наружным кольцом неподвижны, возможны две типовые схемы нагружения подшипника.

Первая типовая схема (рис. 51, а ). Радиальная нагрузка постоянна по величине и направлению. В этом случае внутреннее кольцо подшипника испытывает циркуляционное нагружение , а наружное кольцо – местное нагружение.

При местном нагружении (рис. 51, б ) кольцо подшипника воспринимает радиальную нагрузку , постоянную по направлению, лишь ограниченным участком беговой дорожки и передает ее ограниченному участку корпуса. Поэтому сопряжение наружного кольца подшипника с корпусом должно быть осуществлено по посадке с небольшим средневероятным зазором. За счет наличия зазора данное кольцо в процессе работы под действием отдельных толчков, сотрясений и других факторов будет периодически проворачиваться в корпусе, вследствие чего износ беговой дорожки станет более равномерным и долговечность подшипника существенно возрастет.

Циркуляционное нагружение создается на кольце при постоянно направленной радиальной нагрузке, когда место нагружения последовательно перемещается по окружности кольца со скоростью его вращения (рис. 51, в ). Посадка вращающегося циркуляционно нагруженного кольца должна обеспечивать гарантированный натяг, который исключает возможность относительного смещения или проскальзывания кольца и вала. Наличие вышеуказанных процессов приведет к развальцовке сопрягаемых поверхностей, потере точности, перегреву и быстрому выходу сборочной единицы из строя.

а б в

Рис. 51. Первая типовая схема нагружения подшипника и виды нагружения колей:

а – типовая схема нагружения; б – местное нагружение наружного кольца; в – циркуляционное нагружение внутреннего кольца

колебательным .

Внутреннее кольцо воспринимает суммарную радиальную нагрузку последовательно всей контактной поверхностью дорожки качения, т. е. имеет циркуляционное нагружение , схема которого, аналогичная схеме, представленной на рис. 52, в.

Режим работы подшипника принимается в зависимости от его расчетной долговечности. При расчетной долговечности более 10000 часов режим считается легким, при 5000…10000 часов − нормальным и при 2500…5000 часов − тяжелым. При ударных и вибрационных нагрузках, которые испытывают, например, трамвайные и железнодорожные буксы, валы дробильных машин и т.п., режим считается тяжелым независимо от расчетной долговечности.